Vg
<</¢.p

A STUDY OF THE EFFICIENCY OF
TMS-BASED PRODUCTION RULE SYSTEMS

by
Khalid Waleed Mahmoud

Supervisor
Assoc. Prof. Riad Jabri

Co-Supervisor

P %/ Asst, Prof. Khalil e} Hindi

l»‘!"”“”L“b-d!I,.JSJ*,;

Submitted in Partial Fulfillment of the Requircments for the
Degree of Master of Science in
Computer Scicnce

Faculty of Graduate Studies
University of Jordan

December 1997

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

it

This thesis was successfully defended and approved on 8/12 /1997

Examination Committee ey Signature

Dr. Riad Jabri, Chairman
Assoc. Prof. of Compiler

Dr. Khalil ¢l Hindi, Member
Asst. Prof. of Artificial Intelligence

Dr. Yahia Halabi, Member
Prof. of Numerical Analysis

Dr. Ahmad AL-Jaber, Member
Assoc. Prof. of Algorithm

Dr. Arafat Awajan, Member
Asst. Prof. of Artificial Intelligence

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

i

Acknowledgement

I am gratefully acknowledge the guidance, and help of my supervisor Assoc. Prof, Dr,
Riad Jabri, during the preparation of this work.

I would ltke to express my deepest thanksto my co.-supervisor Asst. Prof. Dr.
Khalil el Hindi, for his guidance throughout the study.

Finally, I would like to thank the staff members and postgraduate students in the
department of computer science, for the relaxed and friendly atmosphere they have

provided.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Contents

Acknowledgement iii
Listof Contents PRI o v
List of Appendices i
Listof Tables e vil
List of FIQUIES . ..o ix
ADSIIACE . . . o xi
Chapter 1: Introduction 1
Chapter 2: Backgroundo 7
2.1 The ATMS e 7
2.2 ProductionRule Systems,o 10
23 TheRete Algorithm i 12

2.4 Integrating Production Systems and Truth Maintenance Systems 15
2.4.1 Loose coupling the ATMS and production system. 16
2.4.2 Tight coupling of ATMS and production system : the Morgue system 18

2.4.2.1 Drawbacks of the Morgue system 22

2.4.3 Tight coupling of ATMS and production system : The Hindi system. 24

Chapter 3: Design and Implementation27
3.1 Assertions, and Ruledesign. it 27
3.1.1 ASSErtIONS . . . oo e e 27
Bl 2 RUIES . o 28
3.1.2.1 Vadable Restrictions 29

3.2 The Rete Algorithm i 31

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

321 ThematchProcess 31
J2Z20tuctures 32
3.2.3 The Rete Building Algorithm. e .38
3.2.4 The Reasoning Processcooviiiniin i, 44
3.3 ATMS : Structures and Algorithms 50
331 Structures. 50
3.3.2 Label update and Nogood handling 52
3.4 Loose coupling of ATMS and production system 54

3.5 Tight coupling the ATMS and production system: Morgue System. . .. 57

3.6 Tight coupling the ATMS and production system: the Hindi System. . . 65

Chapter 4: Performance Evaluation of the Algorithms 74
41 The Queenproblem. 74
411 RuUles ... 75
4,1.2 Resultsand Conclusions 77
4.1.3 Different versions of the queen problem. 78
4.2 A Constraint Satisfaction Problem 80
42 T RUIES ... 80
4.2.2 Results and Conclusions. oo 82
4.3 Student Registration system-1 ; a typical Database system e 35
43 01 Rules 86
432 Resultsand Conclusions, 90
4 4 Student Registration system-2: a typical Database application 91
4.4.1 Results and Conclusionsooeer e, 92

4 4.2 Different data for the registration problem 92

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

vi

Chapter S:Conclusions 94
S51Conclusions. 94
5.2 Suggested Future Work 95
References 97

Appendices

Appendix 11 ReteProgram. 99

Appendix 2 : Loose Coupling Program 119
Appendix 3 ; Morgue System Program 149
Appendix 4 : Hindi SystemProgram 177
Appendix5: Rules......... 208
Abstract inArabic. 212

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

il

List of Tables

Table 1:ATMS and Production system Interaction. 57
Table 2: Four cases in The Morgue Syétem 61
Table 3; Six cases in the Hindisystem 67
Table 4: Time and join operation needed for 4-queen problem 78

Table 5: Number of assertions in alpha memory nodes (4-queen problem) .. 78

Table 6: Time and join operation needed for 3-queen probiem 78
Table 7: Time and join operation needed for 5-queen problem 78
Table 8: Time and join operation needed for 6-queen problem 79
Table 9: An example of a constraint satisfaction problem, 80

Table 10: Time, join operation, contradiction fire needed

for Constraint satisfactionproblem 83
Table 11: Number of tuples in alpha memory nodes fConstraint) 83
Table 12: Time, Join operation, Label Computation comparison

for registration system-1 L 90
Table 13: Execution Time, Join operation, and Label

Computati'(.;n comparison for registration system-2 92
Table 14; Time, Join operation, Label Computation

comparison for registration system-1 (examplea) 92
Table 15 : Time, Join operation, Label Computation

comparison for registration system-2 (examplea) 93
Table 16 : Time, Join operation, Label Computation

comparison for registration system-1 (exampleb) 93

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

ix

List of Figures

Figure 1; Reasoning system = problem solver + TMS. 3

Figure 2: Rete Network S 14
Figure 3: An Example of Rete network used in loose c?oupling ““““““ 17
Figure 4: An Example of Rete network used in tight coupling 20

Figure 5: An Example of Rete network used to show the drawback

of Morguesystem. 23
Figure 6: The next nodes of a type-checkingnode 34
Figure 7: The nodes that follow alpha-memnodes 35
Figure 8: Rete Network 39
Figure 9: The Output of Rete building algorithm 40
Figure 10 : The Reasoning Process 45
Figure 11 : The Dependency Network e REER 52
Figure 12 : The Reasoning Process in Loose Coupling 55
Figure 13 ; 4-queens problem solutions oL 74
Figure 14 : Rete network corresponding to 4-queens l?roblem 76
Figure 15 : Execution Time required to solve the queen problem 79
Figure 16 : Join operation in Queen problem 79

Figure 17; Rete network corresponding to constraint satisfaction problem . . 82

Figure 18 : Execution Time for Constraint satisfaction problem....... ... 84

-

Figure 19: Join operation and contradiction fire for Constraint
satisfactionproblem e 84
Figure 20: Rete network corresponding to Registration problem(part of it) . 89

Figure 21 : Execution Time for Registration problem , 91

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Figure 22 : Number of Join operation and Label computation comparison for

Registration problem e e

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Abstract

A STUDY OF THE EFFICIENCY OF
TMS-BASED PRODUCTION RULE SYSTEMS

. by
Khalid Waleed Mahmoud

Supervisor

Assoc. Prof. Riad Jabri
Co-Supervisor

Asst. Prof. Khalil el Hindi

Truth maintenance systems (TMS) have become a common and very widely used in Al
technology. TMS’s give solutions for a lot of problems; such as retracting facts,
explaining results, reasoning in dynamic environment and so on. Assumption-based truth
maintenance system (ATMS) is one kind of TMS that support multiple contexts. Tt can
be tightly or loosely coupled with produ.ction systems in order to find an optimal
solution to a given Iknow]edge based problem by investigating all possible contexts
stmultaneously.

Many algorithms to couple ATMS and production systems have been suggested.
This thesis is aimed at empirical study of three coupling algorithms. The first algorithm
is based on loose coupling, where the production system and ATMS are clearly
separated. The other two algorithms are Jbased on tight coupling, where the ATMS

operation is integrated with the production system’s operations, these two algorithms

are: Morgue system and Hindi system.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Xii
Within the framework of this study, the performance of these algorithms has been
studied and compared with each other, as well as their advantages and drawbacks have
been described in details.
It has been found, using four different applications, that the tight coupling

approaches are more efficient than the loose coupling approach, and the Hindi system is

at least as efficient as the Morgue system, and in many cases much more efficient.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Chapter 1

Introduction

Production systems have played a very important role in the evolution of Al by
introducing and performing search process needed in many Al application. Production
systems consists of the following : .

¢ A collection of if-then rules, each consisting of if-part that determines the conditions
needed to fire the rule, and then-part which describe the action to be performed if the
rule is fired. When the conditions of a rule (if-part) is true, then the rule’s action
(then-part) is executed and the rule is said to be fired.

o A set of data (assertions) stored in working memory, these daia are the knowledge
needed for the problem to be solved, sometimes called working memory elerrllents
(WME’s).

e Control strétegy that specify the order in which the rules will be used and a way of
resolving conflicts when there is more than one applicable rule .

« Rule applier: a way to execute the then-part of the rule.

The flow control in reasoning system finds a list of all applicable rules, and selects
one of them to be fired (conflict resolution). Firing a rule can change the content of the
working memory and this can affect the list c;f applicable rules. The previous steps must
be repeated until no rule can be fired.

Conventional reasoning systems have several shortcomings, these shortcoming are

i

listed as follows:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

1-

Conventional reasoning systems do not provide explanation of how its conclusions
were derived from the initial assertions. They just provide the answer which is not
always enough. For example, in diagnosis system, it is not accepted that the system
decides that a surgery is needed without giving the reason for this decision,
Conventional reasoning systems do not provide explanation of why something is
impossible. Again if we have a way of generating an explanation about why it is
impossible then we might be able to find the reasoné.

When a reasoning system makes an inference based on the facts that we halve at hand,
the issue arises of what to do if one of the facts become false. We have to retract all
facts (assertions) that was derived using this fact. This is can not be done in
conventional reasomng system since we don’t know which assertions have been
derived using this retracted fact. This can be done if we know the data dependency.
The data dependlency means that how the truth or falsity of each assertion is related to
the truth or falsity of other assertions. This issue of belief revision is important in
many real world applications,

Since most Al reasoning system search, %hey often go over parts of the search space
again and again. This is an overhead which can’t be avoided in conventional reasoning
system. If the system cached its inference then it would not need to re-derive
conclusions that it had already derived earlier,

Conventional reasoning systems are designed to work with information that must be
complete, i.e. all facts that are necessarily to solve the problem are present in the
system or, at least, can be determined so that the user can be asked to provide. These
systems can't deal with situation that dépends on lake of some piece of knowledge
(non-monotonic inference). For example, we would like to be able to say things like

“if you have no reason to suspect person then assume he did not do it” , adding a new

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

assertion (some reason to suspect the person) may invalidate an inference that
depends on the absence of that assertion. (The ABC Murder story (Quine, 1978), is a
good example for non-monotonic reasoning).
The previous shortcoming led .tb the development of truth maintenance systems
(TMS’s} that have become a common and very widely used in Al technology. TMS’s is a
technique developed originally for the purpose of belief revision.

a TMS-based reasoning system usually consists of two parts: a problem solver and

TMS as shown in figure 1.

Justifications

Problem solver TMS

b, 4

Beliefs

Figure 1: Reasoniig system = Problem solver + TMS

Whenever the problem solver performs an inference step, it informs the TMS about
the belief of the problem solver data and the reason for these beliefs by sending its
justiftcation (information about how the datum be derived) to the TMS. The TMS
creates for each datum a node, and connect this node with nodes that were used to infer
this node, these nodes appear in the justification. The result network (nodes,
justifications) s called dependency network. The problem solver also informs the TMS
of sets of mutually inconsistent beliefs. In return thelTMS can inform the problem solver

if there is a current set of mutually consistent beliefs.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

TMS can help to overcome the previous shortcomings of the conventional
reasoning system:

1- Justifications recorded by the TMS allow the problem solver to generate explanation
by tracing the dependency network,

2- Justification again can be traced backward in case of contradictions to identify the
piece of knowledge responsible.

3- When a fact (assertion) turns to be false, TMS use the dependency network in order
to locate the inferred data that depend directly or indirectly on the retracted fact; and
thus provide ﬁleans to perform some sort of belief revision (Hindi, 1994).

4- Using the cashed inference in the TMS, the problem solver need not to re-derive
conclusions that had already been derived earlier in the search.

5- When a new assertion becomes available, the TMS located the inferred data that
depend on the abs.ence of this assertion and retract these inferred data; and thus
provides means to perform non-monotonic reasoning.

Truth mainténance systems have the potential to significantly improve the
efficiency of problem solving. There are many cases in which a TMS enhances the overall
efficiency of thé reasoning system. In many cases, cashing inferences is more efficient
than rerunning the inference rules that generiated them in the first place. However, if the
inference rules are inexpensive and the task does not require an exponential number of
assertions, the TMS is probably inappropriate (Forbus, 1993).

There are several different families of TMS. Each type serve the problem solver in
different ways, and hence support different types of Al problems. The main families of

TMS’s are as follows :

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

» Justification-based truth maintenance system (JTMS): These systems are the oldest
type of TMS. They support non-monotonic reasoning, and allows the problem solver
to make inference in single context.

e Logic-based truth maintenance system (LTMS): Unlike the JTMS, the LTMS allows
negations to be expressed explicitly and therefore can represent any propositional
calculus formula; otherwise, the JTMS, LTMS are very similar.

» Assumption-based truth maintenance system (ATMS): The ATMS is like a JTMS, but
it allows the problem solver to make inferences in multiple contexts at once to
generate all solutions, and this allows the ATMS to consider all possible combinations
of assumptions. The basic ATMS doesn’t support non-monotonicity. However, it has
been extended to deal with non-monotonic reasoning (Dressler, 1988).

These various TMS systems have advantages and disadvantages with respect to
" each other. The JTMS and the LTMS are often better when only one single solution is
required (reasoning in one single context) since they do not need to consider alternatives.
However, the ATMS is more suitable for pI‘Oblen:lS that require reasoning. in multiple
contexts at the same time (all solutions are required).

An optimal solution to a given knowledge based problem may be efficiently
obtained by investiga;ing all possible contexts simultaneously. Since the Assumption-
based Truth Maintenance System isa multible context TMS, we concern ourselves, in
this thesis, with the ATMS.

Al researchers Ohta(1990), Morgue(1991), Hindi(1994) considered integrating
problem solver and the ATMS in order to improve the overall efficiency of reasoning
system. The main approaches to integrate the problem solver and ATMS was the loose
coupling approach and the tight coupling apll‘jroach. Morgue noticed some drawbacks of

the loose coupling approach and so developed the tight coupling approach to overcome

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

these problems. However, Hindi noticed some drawbacks of Morgue approach and so
suggested a new approach for tight coupling.

Within the framework of this study, all previous approaches have been
implemented and their performance in four different problems has been evaluated

The rest of the thesis is structured as follows. In chapter two we review the main
approaches of integrating production systems with truth maintenance system. In chapter
three we present the structures and the algorithms needed to implement the main
approaches. In chapter four we give the empirical performance comparison between the

approaches. The main findings and possible future works are summarized in chapter five.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Chépter 2

Background

In this chapter we will review the ATMS, production rule systems, and the main
approaches to integrate them. In section 2.1, the ATMS is presented. Production rule
systems are discussed in section 2.2. In section 2.3 the Rete algorithm is described. In
section 2.4, three approaches to integrate the Rete-based production rule system and
ATMS are discussed.
2.1 The ATMS
The ATMS (de Kleer, 1986 a, b & ¢} (Forbus, 1993) is a search-control mechanism that
can be combined with a problem solver to solve a wide range of problems. The problem
solver and the ATMS interact with each other as follows:
1- The problem Isolver determines the inference (Datum) to be made and its justification.
2- Then, the problem solver transmits the justification to the ATMS.
3- The ATMS creates a node for the derived assertion.
4- Finally, The ATMS computes a label for the node by executing the label-update
algorithm (discussed below and represented formally in chapter 3).

Let us present some definitions that will be usefut (all the.following definitions are
taken from de Kleer, (1986)):
Problem solver Datum: Datum is used to refer to the problem solver implication, and it
is the structure used to represent assertions and tuples.

ATMS node: Node is used to refer to ATMS node. An ATMS node has the form:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Yaawm: < datum, label, justifications™>
Consider for example the following ATMS node: Yo <P, {{A, B},{C}},{(a, b)}>.
this means that the datum P holds under assumptions A and B or under C only (capital
letter), and P was derived using a, b (small letter) as antecedent part of the justification.
Assumptions: An assumption is a special datum which the problem solver assumes but

¥

might later retract.
Justifications: An ATMS justification describes how a node is derivable from other
nodes, for examﬁle, a, b=>c;this meanthat the node ¢ is derived using the nodes a
and b.
Environment: An environment is a set of assumptions. A node » is said to hold in an
environment Z if n can be derived from F and the current justifications.
Context: The c':-ontext of a consistent environment is the set of facts that can be derived
from the assumptions of that environment,
Label: The label is a set of environments associated with every node, n. Every
environment £ of n’s label must be consistent and # must holds in each environment E of
n’s label. The label is constructed by the ATMS.
Dependency Network: It is the network created by the ATMS from nodes and

justifications. ¢
The label of a node cpnsists of some eﬁvironments in which node is hold in. Each
environment consists of se\'/eral basic assumptions that led (directly or indirectly) to the
node. The assumption is a special datum which the problem solver assumes but might
later retract. |
An environment is inconsistent (nogood) if the assumptions of this environment

entail a contradiction. Any environment £ which is a superset of any environment

“marked as nogood” is also nogod‘d. This due to the monotonic nature of the ATMS i.e.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

if a node (contradiction for example) can be inferred in an environment, E, it can also be
inferred in any super environment of E. -.

The label of any node must be consistent, sound, complete and minimal. A [abel,
L, for a node, n,- is consistent if all ofits environments are consistent. L is sound if »
holds in all environments of [. L is complete if every consistent environment £, for
which # holds, is a superset of some environment in Z. L is minimal if no environment in
L is a superset of any other environment in L.

Whenever a new justification is provided to a datum, the ATMS executes the
label-update algorithm. This algorithm starts by computing the label for the consequent
of the justification (derived assertion). For example, Consider the nodes a, b and ¢ having
the following labels:

L(a) = {{A, U}} ; L(a) means the label of a node a.

L(b) = {{B}, {C, D}, {A, C}}

Lo =0 478594
Now if anew justification for ¢, @, & = ¢, is supplied, the label of the node ¢ must be
updated. The first approximation of the new label consists of the union of all possible
combinations of single environments; one environment from each antecedent node label.
Thus for ¢ we get {{A, B, U}, {A C, D, U}{A, C, U}}, the label constructed in this
way is complete and sound. The second step is to malke it minimal, this could be done by
removing the e;wironments that are superset of the others, so we have to remove {A, C,
D, U} because itis a superset of {A, C, U}. The third step is to make it consistent, this
could be done by removing the environments that are superset of the nogood
environment. Suppose that {A, C} is nogood environment, so the environment {A, C,
U} should be removed because it is a superset of the nogood environment {A, C}. Asa

result we get a new label for the node ¢ which is {{A, B, U}}.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

10

After computing’ the label for the derived assertion, The label-update algorithm
check if the newly constructed label is equal to the old one, if so, then, the processing of
the derived node is finished. Otherwise, the label of all the consequent nodes (all nodes
that are derived using this node) have to be updated in an analogous way.

Whenever a new nogood environment is discovered, this environment and all its
superset environments must be removed from the label of all nodes.

Some typical queries that the problem solver can ask the ATMS are:

» Under what assumptions does the given datum hold.
» Are a given set of assumptions consistent.

In summary, ATMS performs the following basic operations: creating a node to
represent a datum, adding justifications to the dependency network, maintain the label of
each node, handling nogoods. However, label updating and nogoods handling are costly
operations and their efficient implementation is a key point in the successful use of
ATMS in real word pr'oblem.

2.2 Production Rule Systems
Production (rule-based) systems are popular architecture for problem solvers. A typical
system consists of:
¢ Domain knowledge in the form of rules or productions.
e Working memory which holds ali the aésertions (tuples) that are already known for
the current problem.,
* A rule interpreter which determines which rt;les are applicable for the current
problem, and select one of the rules in order to execute it.
By convention, any rule contains two main 'parts: the “if part” of a rule which is

called LHS (left-hand side), sometimes called an antecedent part, and its “then part”

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

11

which is called RHS (right-hand side), sometimes called consequent part. The LHS of
any rule consists of a set of patterns,

A forward chaining rule system starts with a collection of assertions and tries all
available rules ovér and over, adding a new assertions as it goes (incremental), until no
rule can produce a new assertion. In Contrast, a backward chaining rule system starts
with a goal and tries to verify that goal using assertions that are already known.

Because TMS are particularly useful for incremental systems (to be able to
consider any new relevant data that become available during reasoning), and because
forward chaining 1s incremental by nature, we concentrate, in this thesis, on the forward
chaining systems.

The basic inference cycle for a production systems goes into three phases: match,
select, and act. These phases are described below:

Match: The patterns in the left hand side (LHS) of the rules in the knowledge base are
matched against the content of the working memory, in order to determine which rules
have their LHS’s satisfied with consistent bindings to the working memory assertions.
Such Rules are said to be applicable and are put in a queue called conflict set.

Select (Conflict Resolution): From the conflict set, one of the rules is selected to be
executed. The selection strategies may depend on any criteria, for example, first in first
out (FIFO).

Act: The rule that have been selected from the previous step is executed by carrying out
the consequence of the rule (RHS), they may involve any operation (add, delete, or
change the content of the working memory).

The above cycle is repeated until no rules can be applicable.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

12

2.3 The Rete Algorithm
Among the previous steps, the match step is known to require a large part of the
execution time. Naive algorithm for matching would try to match the rules patterns one
by one against the working memory assertions. This algorithm is not efficient for large
systems (typlical knowledge base may contains hundreds or even thousands of rules, each
with several patterns, and hundreds of assertions as well). The problems of the naive
algorithm are descri-bed below:

1.In each cycle, the naive algorithm starts fresh matching our rules against all the
working memory assertions although the contents of the working memory changes
very little from one cycle to another; this makes a lot of the matching unnecessary,

2. The same patterns may appear in several rules. The naive algorithm does not care,
and the testing is repeated for each one of them.

The Rete (Forgy, 1982) algorithm used in the OPS-5 production system, wlas the
first to address thése problem, The algorithm suggests two methods to minimize the time
needed for the match step, these two methods are described below:

1. Forgy suggests that by saving match information, the rule interpreter does not have to
start fresh in each cycle. Instead, the rule interpreter processes only the new working
memory aséertion by checking if the new assertion in conjunction with the_ assertions
entered earlier can complete the instantiation of any rule; if so the ground instance
(the rule’s patterns are replaced by a corr‘esponding assertions) of this rule is saved in
the conflict set,

2. Repeated testing of the same pattern shared between some rules could be avoided. A
single set of tests for the same pattern could be performed by grouping rules which

share the same patterns and linking them according to their common patterns.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

13

The Rete algorithm first, loads all the rules and examines their LHS’s before the
reasoning starts, compiles the rules into a Rete network, which connects all the rules
having a common patterns in their LHS.

A Rete network consists of several nodes, these nodes and their functions is listed
below:

* A Root node: It is the first node in the network, where all assertions go through. It is
followed by th.e type checking node.

» Type checking nodes: One node is created for each different class of patterns. It is
followed by t-const nodes or an alpha memory node.

¢ t-const nodes: one t-const node is created for each pattern consists of some tests. It
is followed by an alpha memory node.

» An alpha memory node (node): is a place to hold assertions (tuples).

o AND nodes: this node used to join two alpha memory nodes. It is followed by alpha
memory nodes, sometimes called beta memory no&lle.

o P memory nodes: this is the last node created for each rule. It is a place to hold the
joined tuples used to instantiate the rule (i.e. ground instance of the applicable rules).

For example, take the following rules ;

if A(x>50,y), B(y, z>25) then ...

if A(x>10,y), C(y>20, z) then

The complete Rete network built for these rules is shown in figure 2. A, B and C are
type checking nodes. ‘x > 507, ‘x >10°, “2>25, and ‘y >20’ are t-const nodes. a1, o2,
a3, ad, a5, and o6 are alpha memory nodes. AND1, AND2 are AND nodes. P1 and P2
are p-mem nodes.

The Rete matching algorithm works as follows:

L3

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

14

checking .

nodcs
@ 4— t-const nodes—b .

— alph1~mcmory—>
nodes

Figure 2 : Rete Network

o After building the Rete network that corresponds to the rules, ali the initial working
memory assertions are entered to the network from the root node, The root node
receives assertions as inputs, and propagates a copy of each assertion that it received
to each of its successors.

» The type checking node checks the name of the assertion, if the assertion has the right

type, it forwards it to its successors (t-const or o nodes), otherwise it discards it.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

15

¢ A t-const node checks the assertion that it received against a simple test (if needed), if
the assertion passes the test, the node will forward the assertion to the next node (o
node), otherwise the assertion gets discarded.

s AnAND nodé has two input memories and one output memory. An and node checks
whether the incoming assertion matches any saved assertions in the other input
memory node; if so, the and node will join each matching pair and then forwarded to
the output memory node, otherwise, the and node will discards the arriving
assertion.

¢ The assertions or joined assertions that reaches the P memory node, will be used to
instantiate the corresponding rule.

After all aséertions have been entered in a cycle (propagate down through the Rete
network), one rule instance in the conflict set is fired, and the remaining instantiations in
the conflict set are saved. The result of the fired production rule, which may be a new
assertion, is entered to the system, and propagate through the network to find if any
rule instantiation can be completed by that assertion. These new instantiations are added
to the conflict set saved from the previous cycle, and one rule instanc_e in the conflict set
is fired and removed. The reasoning process terminates when no rules can fire(i.e. when
conflict set is empty).

2.4 Integrating Production Systems and Truth Maintenance Systems

Integrating production systems and TMS, will iucrease the overall efficiency of the
production system if a suitable interface is used between the Rete-based production
system and the TMS,; Otherwise this integration could needliessly waste computer

resources(Morgue, 1991).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

16

In this section we will discuss three approaches to integrate the ATMS and Rete-
based production systems. These are the loose coupling approach, the Morgue tight
coupling approach, and the Hindi system tight coupling approach.

2.4.1 Loose coupling the ATMS and p‘roduction system,

The loose coupling approach maintains the dependency ﬁetwork of the ATMS and the
Rete network as a separate entities. It only, modified the “select” step in the inference
cycle in order to integrate the ATMS and the Rete-based production system. This
modification and the main ideas in this approach are described below:

e When the inference engine selects a rule instance to be fired, the ATMS is called to
compute the label of the consequence of the selected rule. If the label is not empty,
the rule is fired; Otherwise, the inference engine select another rule instant, because
there is no point in inferring a datum that holds in no environment.

¢ Contradiction rules have the responsibility to discover the nogood environments.
Since the nogoods and all its superset, must be removed from the labels of all nodes,
the process of label-update will become easier. So discovering the nogoods assertions
as early as possible will simplify the label-update process, and that can prevent other
rules from firing because their consequences will have empty labels. This could be
done by giving contradiction rules more priority in execution than other rules, i.e., by
executing the contradiction rules before executing any other nprmal rule.

Morgue,(1991), noticed two main drawbacks of this approach. The first is that
some work might be done repeatedly by the AFLTMS. The second is that some work might
be done unnecessarily by Rete,

Consider the following example (taken from Hindi, 1994): (The corresponding

Rete network is shown in Figure 3).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

17
Rules :
R1 :if pi(X, Y), pAY, Z), p3(Z) then q(X, Z)
R2 :if pi(X, Y), p2(Y, Z), pa(X, Z) then. | (this is a contradiction rule)
ATMS nodes:
Yoie b < P1(a, D), {{A }},{(.)}>
Yean, o0 <Pa(b,), {{B}},{(.}}>
Yeaw: <p3(e), {E}},{C.)}>

Yoo, 0 <Pa(@, ¢}, {{A, B}},{(.)}>

Figure 3: An Example of Rete network used in loose coupling

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

18

After the initial working memor‘y elements entered the system, the two rules are
found to be applicable. During the select step, the two rules will compute the label of the
shared conjunct rl)l(a, b) A pa(b, c), which is a repeated step that could be avoided.

To illustrate thel second drawback, the environment {A,B} will be nogood after
executing the second rule. Thus, the label of the conjunct pi(a, b) A pa(b, c) will be
empty, but since this information is not available during the match step, The Rete would
still match the conjunct with the tuple ps(c). This is unnecessarily step because the label
of the resulting instance of the first rule will be empty also, and will not be used in the act
step.

We clearly need to integrate the ATMS label computation with the match step of
the inference engine, which was the basic principle of the Morgue, (1991) approach.
2.4.2 Tight coupling of ATMS and production sysiem : the Morgue system
The tight coupling approach proposed by Morgue,(1991) (a very similar approach was
described in (Ohta, 1990)), avoided the loose coupling drawbacks. The approach
integrates the dependency network of the ATMS with the Rete network. The approach
involves some modifications to the Rete al gorithm in the match step. During the match
step, the approach perform the following:
1-Calculate the label of every tuple (assertion) or joined tuple in oo memory nodes and
store the fabels there with the tuple.
2-If the label of any tuple or joined tuple becomes empty (i.e. cannot instantiate a new
rule), then it is removed from all the memory nodes.

Doing so, eliminates the drawbacks of the loose coupling apbroach because;
1-Discarding these tuples or joined tuples with empty label, will prevent the propagation

of the tuple down in the Rete network. Thus in the previous example the tuple ps(c) will

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

19 i

not be matched with an empty label joined tuple, i.e. the approach avoided unnecessary
match work done by Rete.

2-Storing the label of a tuple or joined tuple in the memory nodes, makes it shared
among different rules. This will reduce the label re-computation for the same tuple, i.e.
much of the work done by the ATMS is saved and shared. In our previous example the
label of conjunct pi(a, b) A pa(b, c) will be computed only once.

The main drawback of this approach is described as follows:

label update is a costly operation in the ATMS, and is even made worse with the
tight coupling approach. The Morgue tight Ipoupling approach labels more tuples (the
joined tuples in addition to the usual tuples) than the loose coupling approach, and thus
any operation that updates the labels (contradiction handling, add a new justification,
retract a tuple) must also update the labels in the Rete memory nodes.

Morgue’s tight coupling approach minimiz;—: the effect of this drawback by
reducing the number of tuples in the Rete network and by performing bmore data
recording.

Discovering contradictions as early as possible will shortcut a great amount of
computations and purge a large part of the search space. Since the contradiction rules
produce new nogood environments, and the new nogoods must be removed from the
label of all nodes, the labels of some tuples may become empty label, and so, get
removed from the Rete memory nodes. This reduces the amount of data to be matched
by Rete. Thus firing contradiction rules as soon as they get instantiated would probably
save some matching work. To do so, when a‘tuple or a joined tuple is used to instantiate
both a contradiction rule and other rules, we need to fire the contradiction rule before

transmitting the data to the other rules. In other words, we delay the propagation of the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

20

data (in Rete) to match the normal rules until the contradiction rule is fired. Consider the
previous example (The corresponding Rete network is repeated in Figure 4).

Rules :

Rl :ifpi(X, Y), pA(Y, Z), ps(Z) then q(X, Z)

R2 : if p(X, Y), p2Y, Z), po(X, Z) then L (this is a contradiction rule)

ATMS nodes:

Yoraw: < Pi(@, D) {{A IL{C)F

Toae oy <Palb,), {{B}},{(..)}>

Yo <Pa(e), {{E}},{(..)}>

’YP‘*(ﬂ,C): <p4(a: C),{{A, B}}&{()}>

¥igure 4: An Example of Rete network used in tight coupling

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

21

Since node o5 is shared between R1 (normal rule) and R2 (contradiction rule), any
data that reach the node a5 must be propagaéed first to and3, and when the inslantiated
rule is fired, data can propagated to and?2. When the system executes the contradiction
rule (R2), the system will discover that the environment {A, B} is nogood, and this
environment must be removed from the label of all nodes. Since the label of the
compound tuple in a5 have only this environment, ‘then after deleting this environment
the label becomes empty and so the tuple get discarded. Thus and2 will not make any
matching effort because the left input memory has no tuples.

The tight coupling approach performs the following extra data recording:
1-every tuple or joined tuple records the & memory in which it stored.
2-each tuple is linked through intermediate joined tuple to other tuples.
3-each environment records the tuples and joined tuples which have this environment in
their label.

When a new nogood environment is* discovered, all the tuples and joined tuples
recorded in the new nogood environment "have to update their labels by removing the
nogood environment from them. If the label of any tuple or joined tuple becomes empty
then :

1. record the Rete memory node in which it is stored.:

2. traverse the links between the tuple and other tuples to determine the affected tuples
and record its memory nodes.

3. After finishing the previous step, traverse all the recorded memory nodes and remove

the marked tuples o joined tuples.

To Summarize: The main points of the tight coupling approach are :

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

22

o Rete and the dependengy‘network of the ATMS are integrated together.

« The label for any tuple (or joined tuple) that reaches any memory node is computed.

« All tuples with empty label get deleted.

» The algorithm establishes the needed links betweer: tuples in the network.

o If an o memory node is shared between a contradiction rule and another rule, the
_ contradiction rule is given the priority in execution over all other rules,

¢« When a new nogood is discovered during the reasoning process, the algorithm

updates the label of the affected nodes using the links established previously.

2.4.2.1 Drawbacks of the Morgue system
Hindi (1994) has noticed some serious drawbacks of Morgue’s approach. These are
described below.

First, Label update (adding a new environment) is now more complex because it
may requires rejoining tuples. Deleting tup'es with empty label may complicated things
and make the approach (the tight coupling approach) inefficient. This is because, the
label of such a tuple may gain a new environment {due to a new justification), and thus
becomes relevant again. This tuple needs to be regenerated. If the tuple was part of a
joined tuple then it need to be re-joined.

What makes the problem even worse is the fact that we do not know whether
adding the new environment will cause some previously discarded tuple become relevant
again, before we actually generate such a tuple, and compute its label. |

Consider the previous example (The corresponding Rete network is repeated in
Figure 5).
Rules :

R1:if piX, ¥), pa(Y, Z), ps(Z) then q(X, Z)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

23 1
R2 - if pi(X, Y), poY, Z), pa(X, Z) then L (this is a contradiction rule)
ATMS nodes:
Yot < P1(@ B, {A LGP ;
Yoaw ey <palb, ©),{ (B} {C)P>
Yos: <pae H{E}LIC.))>
ot <pi(a, LA BELC)P

Figure 5: An Example of Rete network used to show

the drawback of Morgue system,
The joined tuple pi(a, b), pa(b, ¢) produced by andi holds in the environment
{A, B}, this environment is a nogood environment, so it must be removed from the label

of the conjunct pi(a, b), pa(b, c), leaving it with empty label, and hence the joined tuple

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

24

must be discarded. Now, suppose that the system adds a new environment to the labei of
tuple pi(a, b) say {C}, This means that the tuple pi(a, b) with a new environment must
be re-joined with the matched tuple in the other input node and so regenerate thg jotned
tuple pi(a, b), pz(b, ¢), but now with a new label {B, C}.

Thus adding a new environment to the label of any tuple requires re;joining the
tuple with all matched tuple in the other input memory, in addition to computing the
labels such tuples. Since the ATMS is usually used in domains that require generating
solution in multiple contexts, adding an environment to the label of a tuple is an
operation that takes place frequently, and also adding environment to the label of in one
tuple may affect another tuple. In short, the addition of a new environment could add
extra overhead to the Morgue approach, which increases the number of operations done
by the Rete instead of decreasing it.

Second, discarding any tuple from the Rete (because it hold in no environment),
will also discard all the work which Rete ha‘s performed to generate this tuple, and also
all other joined tuples of which this tuple is a part of it. So, if this tuple is regenerated
because it gained a new environment, all of the work done by Rete to matchitisa
repeated work that might include some expensive join operations.

Thus from the previous discussion, it is clear that discarding any tuple from the
network, will not reduce the amount of work done by the Rete, instead, it could make
label update more expensive operation that may require a re-matching and re-joining
tuples.

2.4.3 Tight coupling of ATMS and production system : The Hindi system
To improve Morgue’s system, we should consider the following problems :
1.When the label of a tuple becomes empty, the Rete will discard all the works it

performed to match the tuple.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

25

2. When a new environment is added to the label of any tuple, The Rete will perform
extra expensive oper;ltions such as join operation in addition to label update.

The main idea in the solution (Hindi, 1994) was to put tuples with an empty label
in a special inactive part of a Rete memory node (called OUT) and tuples with non-empty
labels in an active part of the memory node (called IN).

Only tuples in the IN part are involved in the match process. Thus, Rete does not
have to do any work on matching a tuple with an empty label, and at the same time need
not discard such tuples. Therefore, it will not need to regenerate such tuples when their

label becomes not empty.

If the label of a node becomes empty, then the label of all joined tuples of which
the tuple is a part of becomes empty. Instead of removing all these tuplles from the
network (as required by the Morgue system) and so, discard all the work performed to
match these tuples, all these tuples are moved to the OUT part of their memory nodes,
and can move back if their label become non-empty. Doing so, solves the first problem.

When th-e. jabel of any tuple in the OUT part becomes non-empty again (because of
a new environment is added to the system), this tuple needs only to be matched with
those tuple in the JN part of the other input memory that have been inserted after they
were moved to the QUT parts of their memory nodes. To do so, Hindi used time stamp
to determine the order in which tuples were inserted, and it is degcribed as follows :

eWhen a tuple is inserted or moved to the N part, it will record the current time.

e¢When a tuple Becomes CQUT., it will record the current time and advance the time.
When the tuple is moved to the IN part and if it was a part of some joined tuples, this
tuple must not be rejoined with the other tuples. In;tead, the joined tuples it is linked to

are moved to the IN part of the their memory. Doing so, solves the second problem.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

26

Hindi, distinguished between t\;vo typés of tuples with empty labels. The firstis a
tuple that have not become non-empty yet, this means that this tuple was never in the /¥
part; such a tuple needs to be matched with every tuple in the IN part. To guarantee this,
this tuple is stamped with a time less than all possible time stamps (e.g. -1). The other
type is, a tuple that was in the /N part in a previous step, and due to discovering a new
nogood the label becomes empty; such tuples must be stamped with the current time.

In The next chapter, we will investigate all the previous algorithms in more d'etail,

and describe all the implementation issues.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Chapter 3

Design and Implementation

i

In this chapter, loose coupling appros‘lch, Morgue approach, and Hindi approach are
discussed in more details. Structures and algorithms for their implementation are
described.

The design of rules, assertions and patterns are presented in section 3.1. The
implementation of the Rete algorithm is explained in section 3.2. The implementation of
ATMS is described in section 3.3. The algorithm and implementation of the loose
coupling is described in section 3.4, The algorithm and implementation of Morgue
system is described in section 3.5, Finally, The algorithm and implementation of Hindi
system is described in section 3.6, The performance of the algorithms will be studied in
the next chapter (Note: Datum is the corresponding structure for assertion (i.e. for
tuple)).

3.1 Assertions, and Rule design
We will start by studying assertions, and their format, then we will describe the format of
the rules as well as the restrictions over the variables.
3.1.1 Assertions
Assertions represent simple facts. An assertion takes the form of a list containing the
assertion name which is a symbof that identify the assertion, field names which are a
symbols preceded by the exclamation mark, and a value for each field. Assertions have
the following syntax:

(assertion-name lfield-namel valuel lfield-name2 valuel . .)

Examples:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

28

o (Add 'Argl 5 |Arg2 7 'Result 12) : This assertion says that “5+7 = 12"
e (Father IF Ali IS Ahmad) : This assertion says that Al is father of Ahmad.

Assertions are stured in the Rete memory nodes, some are stored before the
beginning of the reasoning process, these assertions are called initial working memory
elements. Others are inferred during the reasoning process.

3.1.2 Rules

Procedural knowledge are expressed as rules; these rules are used to. build the Rete
network. Each rule has two main parts; a . trigger (or condition part) and a body (or
action part). The trigger is a list of patterns that specify the kind of assertions which the
rule intends to respond to. The body of the rule consists of a pattern that specifies the
assertion to be inferred. Patterns are similar to assertions but they may contain variables
which are symbols preceded by question mark (e.g. : ?x is a variable).

Whenever a set of assertions match the trigger part of the rule, the rule is fired (i.e.
it’s body is executed in the environment formed by matching the patterns with the
assertions),

The general form of rules is:
(Rule rule-name (trigger) ==> (body)).
A rule body has the form:
(Rassert! pattern).
Example: “if ?x is father of ?y and ?y is brother to ?z then ?x is father of 22" is
represented using the following rule :
(Rule R1
((Father 'f 7x!s 7y)

(brother 1b1 7y Ib2 7z))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

29

==>(Rassert! (father [f 7x |s 7z)}))

Another ldﬁd of rules called contradiction rules, which are used to detect
contradictions. Since contradiction handling is very important operation in all the
algorithms we are studying, we encode them as explicit rules of the form:

(Contradiction-Rule rule-name

(trigger-list)

==>(Rassert-nogood!))
Example: “if ?x is greater than ?y, and ?y is greater than ?x then assert a
contradiction” is represented using the rule:

(Contradiction—rule R2

((Greater larg] 7x larg2 ?y)

(Greater largl 7y farg2 7x))

(Rassert-nogood!))
3.1.2.1 Variable Restrictions
In the trié,ger part we sometimes need to put some restrictions over the values that the
variables (in patterns) may take. In order to have this ability, we encode such restrictions
using lisp functions that take all field values in the assertion, in the same order as they
appear in the pattern, as parameters. The functions return “tme” if the corresponding
condition is satisfied. The functions are associated with the corresponding patterns
according to the following syntax;

(patiern)} :test 4 function-name.

For example, if we need to force the following pattern (success !student-name ?x Imark
?y) to match only the assertions that have thelvalue of the “mark” field greater than or

equal to 50, then the previous pattern can be rewritten in the following manner:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

30

(success !student-name ?x mark 7y): test ‘#’check-mark
where “check-mark” is a function defined as :
(defun check-mark (x y) (>=y 50)).

If more than one restriction exists you can encode all these restrictions in the
function. Similﬁfly, if you need to put restrictions on all patterns in the trigger part, you
can write a function that check these restrictions, and put the function name at the end of
the trigger part, using the following format:

(rule rule-name
(trigger-list): test # function-name

H

==>
(body))

This function takes all the field values in all the patterns in the trigger part in the
same order as they appear in the trigger part. For ekample, in the n-queen problem (see
section 4.1 for 2 description for the problem), we need every queen in a different row.
The rule used to enforce that is:

(Rule Q
((q!r 7x1 lc ?y1)
(q'r 7x2 lc 7y2)
....): test # check-rows
==>
(body))
“check-rows” is a function that ensures that each queen is in different row and is defined

as.

(defun check-rows (x1yl x2y2)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

31

(and (not (= x1 x2)) (not (=x1x3)).......)
The general rule syntax is:
In case of a normal rule (not a contradiction rule):
(Rule rule-name

((patterni) [:test # 'function-namej

(pattern n) [:test # function-name]) [:test # function-name]
==>(Rassert! (pattern)})
Contradiction rule have, on the other hand, the following form:

(Contradiction-Rule rule-name

((patterni} [:test # function-namej
(patiern n) [test # function-name]) [test # function-name]

==>(Rassert-nogood!))

3.2 The Rete Algorithm

In this section the Rete algorithms were studied in ierms of their match process and

structures used in the algorithms. Based on these terms, two algorithms are introduced,

one to build the Rete network and the other to do reasoning.

3.2.1 The match Process

The Rete algorithm aims at improving the efficiency of the matching process, necessary

in all production systems.

The Rete algorithm compiles the trigger part of the rules into some tests that must
be satisfied in order for rules to become applicable (firable). There are two kind of tests:

intra-tests and inter-tests, An intra-test involves one pattern, for example, for

following pattern:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

32

(P1 If1 ?x 1f2 7y 1f3 7x 1f4 10)

the following tests must be generated:
1. (Ifl = If3); because the variable ?7x is associated with !f1 and If3, which
implies variable equality.
2. (if4 = 10); because !f4 ha§e a constant value rather than variable (constant
test). |

An inter-test involQes two or more patterns, for example the patterns:

((pt If1 ?7x !f2 ?y)

(p2 'f3 7z !4 7x))
imply that !f1 = !f4, which is an inter test that involves two patterns, so the following test
must be generated: (!f1 = 1f4); because the variable 7x associated with !fl and |f4.
3.2.2 Structures
After analyzing the patterns in all rules, the rules used in the problem solver are compiled
into nodes in the Rete network. These nodes are described in detail bellow: (see Deflsp
in appendix 1.2 for lisp implementation for the nodes)
1- Root Node: It’s the first node in the network where all data must pass through. This
node is attached to a distinct set of type-checking nodes. Its task is to forward a copy of
each tuple it receives to each attached type-checking node. The structure (record) used
to define the root node consists of:

Title: An identifier used to identify the Rete.
Type-checking: A list of the next type-checking nodes.

2- Type-checking node: All patterns found in the trigger part of all rules are classified
into groups accordir;g to their names (the first symbol that appears in the pattern), a
type-checking node is created for each class of patterns and is attached to the root node.

Each assertion that passes the root node must be tested by these type-checking nodes. A

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

33

type-checking node discards the tuple if it not of the corresponding type, and passes it to
the following node if it is. The following node could be at_const nodes and/or ;:ﬂpha
memory node. A t){pe—checking ‘node has one input and several output nodes. The
structure used to define a type-checking node consists of :

Name: A pattern name.

Next-nodes: A list of the next nodes (alpha-mem or/and t-const nodes)
for example the pattern (loc Ir 7x lc 7y), a corresponding type-checking node is created
for it with name ‘loc’.
3- T-const node (Test for Constant): After the Rete classified the patterns into classes
according to tileir name, tﬁe patterns within the same class must be classified also
according to some restrictions related to each pattern (intra-tests). (see section
3.1.2.1,3.2.1) for example: Suppose we have the following patterns that appear in
different rules and all have the same pattern name:;

1- (loc !f X 1c ?y)

2-(loc!r1 lc?y)

3- (loc Ir 7x Ic %)

4- (loc It 7x Ic ?1): test # function name

All the previous patterns have the same type-checking node because all of them
have the same pattern name ‘Joc’, but each of them has different conditions that must be
satisfied in order that they can be instantiated:

1-The first péttem has no condition.

2-The second one has a test (fr = 1) wl;ich is a constant test (t-const1).

3-The third one has a test (!r = Ic) whichisa variables equality (t-const2),

4-The fourth one has two tests: (Ic = 1), and an external test function(t-const3).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

34

According to the previous cases, the type-checking node (‘loc’) must be attached -

directly to alpha-mem node to store all the assertions that match with the first pattern
(loc It ?7x l¢ ?y), also it must be attached to three t-const nodes, one for each pattern of
the patterns 2, 3, 4. All assertions that pass the tests in any t-const node are stored in a
corresponding alpha—mem node (see figure 6).
Some tuples can pass the test of more than one t-const node. For example: the assertion
(foc !r 1 lc 2) satisfying the corresponding t-const nodes for pattern | and pattern 2,
therefor, a copy of the assertion should stored in a1 and another in 2.
The structure used to define a t-const node consist of:
1d: Unique identifier.
Checkl: Constant check.
Check2: Variable equality.
Check3: External test function.
Next-node: An alpha memory node that store all the passed assertions.
&
Type-checking
| @ @ t;const

Figure 6: The next nodes of a type-checking node
4- Alpha-mem node: It’s a place to hold assertions (compound or single) that can pass

the previous nodes. Some rules have only one pattern, others have several patterns. In

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

35

case of rules with one pattern, the node that fofiows the alpha-mem node is p-mem node
(a node corresponding to each rule). In the second ca:‘;e, the node that follows the alpha-
mem node is an AND-node which test inter-tests (conditions that involve more than one
pattern, see figure 7)

In figure 7, two AND node follows a2, ANDI is it’s left AND-node, AND2 isit’s
right AND-node, o2 aiso has a p-mem node as a next node. The structure used to define
the alpha-memory consist of:

Id: A unique identifier for the node.

Data: A list of tuples that are stored by the node.

R-ands: A list of right AND-nodes linked to the alpha-mem node.

L-ands: A list of left AND-nodes linked to the alpha-mem node .

P-mems: A list of possible p-mem nodes linked to the alpha-mem node.

Prev-node: A pointer to the previous node.

~ Figure 7: The nodes that follow alpha-mem nodes
5- AND-node: ‘An AND-node has two input memory nodes and one output memory
node, An AND-node does the following:

1- Matches the two incoming assertions to see if they satisfy the corresponding inter-

test.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

36 .

2- If the input assertion pass the test, the AND-node joins the two assertions in one
compound fuple (assertion) and stores it in the output memory node.

The structure used to define an AND-node consists of:

Id: Unique identifier. *

Checkl: Inter-test between two assertions,

L-mem: Left input alpha-mem node.

R-mem: Right input alpha-mem node. ‘

O-mem : Output alpha-mem node.
6- P-mem node: There is a corresponding p_mem node for each rule. All assertions that
pass all the tests related to the rule are found in the alpha memory node which is located
immediately before the p-mem node. Those compound tuples are ready to instantiate the
body of the ruleif they pass the external function test associated with the trigger patt of
the rule (see section 3.1.2.1). These tuples are called justification tuples “A tupleina
p-mem corresponds to a ground instant of a rule” (Hindi 1994). These justification tuples
are used to instantiate the body of the rule using the variable locations that are generated
during the compilation of the rules. Consider.‘ for example the rule:

(rule R1 |

((father 1f 7x Is 7y)
{brother bl 7x b2 7z))
(Reassert! (uncle lu 7z Im?%y))

In order to instantiate the pattern found in the boay of the rule (uncle 'u ?é Im 7y),
the variables in the pattern (?z and ?y) must be assigned values. The values must be
taken from the trigéér part. In order to know where to find the corresponding values for

each variable we must generate the variable locations for this rule and store it in the p-

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

37

mem node, so it can be used in the reasoning algorithm, the variable locations for this
rule are:

(?x =>1f) or (7x => Ib1); 7x is found in the field !f or tb1

(?y => 1s); 7y is found in the field Is

(7z => 1b2); 7z is found in the field b2
The structure used to define the p-mem consists of:

Rule-name: The rule name corresponding to this p-mem node.

Inter-test: External function used to test some restriction over all the patterns in

the trigger part.
Consequ-ence: The body of the rule. (uninstantiated)
Var-loc: A list containing all the variables in the trigger part and in which field they
can be found. |

7- Instance: Iising the justification tuples and variable locations from the p-mem node,
we can now generate the binding environment that will be used to assign the right values
for each variable in the body of the rule, For examplie, In the previous example the only
variables found in the body are 7z and 7y, so we need to generate a binding environment
that consists of the 7z and ?y variables, this binding environment is:

((7z = value(Ib2) ; the value of 7z equal the value of the field |b2

(7y = value(!S) ; the value of 7y equal the value of the field !S)

A rule instance is an instantiation of the rule. i.e. after substituting a value for each
variable in left and right hand sides. t
The structure used to define instance consists of :

Rule-name: The name of the rule to which the instance correspond to.

Consequence: The body of the rule (uninstantiated).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

38

Vars: A list of all variables in the body.

Binding: An environment generated from the tri 'gger part.

An instance is inserted in the conflict set in 01I'der to be processed by the conflict
resolution strategy. All assertions generated by firing the instantiated rules are stored in
a queue. Elements in the queue will be inserted in the root node in_ order to be processed
later by the reasoning a!gorithm.

8- Datem: is the corresponding structure for the assertion(tuple). A Datum’s structure
consists, only at this stage, of the assertion that it represents, and a list of alpha memory
nodes where it can be found. The structure will become more complex as we consider
other algorithms,

9- Rete Production System (REPS): A REPS is represented as a structure that
encapsulates all nodes and subsystems used in the production system (e.g. ATMS, Rete).
The component of the structure used to define the production system are:

Title: The name of the problem solver.

ATMS: A pointer to the ATMS associated with the problem solver.

Rete: A pointer to the first node in the Rete network.

Derived: A special memory to hold all the tuples that can not be inserted in any

alpha memory nodes (because they are not used in the Rete).

Alpha; A list of'alpha memory nodes that conta;in a single datum.

Conflict-ﬁet: A place where all instantiated rules are stored.

Queue: A place where all unprocessed tuples are stored.

3.2.3 The Rete Building Algorithm.

In this section we will discuss the algorithm used to build the Rete network (i.e. the
algorithm that compile the rules into a corresponding Rete network). This algorithm

takes a list of rules that constitute the problem solver, and translates them into nodes in

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

39

the Rete network (see buildIsp in appendix 1.3 for complete lisp implementation for
building algorithm), for example the following rule:
 (defun testl (x1 x2) (> x1 10))
(defun test2 (x1 x2 x3 x4 x5) (not (= x1 x4)))
(Rule R1
((Condl x 1ty ?cl 'm 7cl)
(Cond2 'z 7cl lw 7¢3) :test #'test]) :test #’test2
= => (Rassert! (loc |11 7¢1 112 7c3)))
In figure 8, the corresponding Rete for the previous rule is given. In figure 9, the

output of Rete building algorithm is given.

9@‘9\
o0

(36

Figure 8: Rete Network

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

40

Title: Example

/ Type-checking: { Cond1,Cond2) \

Name: Cond2
Next-nodes; T-consti

Name: Condl
Next-nodes; T const2

Id: 1

checkl: nil
check2: nil

1d:2
checkl: (Ix =1)
check2: (ly = !m)

check3: testl check3: nil

nex{-node: Alpha 1 next-node: Alpha 2
i !

Id:] Id:2

data: nil data; nil

R-ands;Andl R-ands:; nil

L-ands: nil L-ands:Andl

p_mems: nil p_mems: nil

Prev-node: T_constl

Prev-node; T_const2

- =

Id:T

Checkl: ((ly ='z) (‘m =1z}
L._mem :Alpha 1

R_mem :Alpha 2

O_mem :Aipha3

Id:3

data; nil

R-ands: nil

L-ands: ni}

p_mems:; P-mem (R1)
Prev-node: Andl

h 4

Rule-name:R]

inter-test :Test2

consequence : (Rassert (loc |11 7c1 112 ?¢3))
var-loc: ((7¢3 =>lw) (7c]l => Im))

Figure 9: The Qutput of Rete building algorithm

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

4]

In this algorithm we will use RULES to refer to the rules of the problem solver,
ALPHA to refer to an alpha memory node, T-CONST to refer to a t-const node, AND
to refer to an AND-node, and TCHECK to refer to a type-checking node. This algorithm
is described below:
build-Rete (RULLS)

create the r;oot node, ROOT

Jor each rule, R, in RULES do

let ANTECEDENTS = a list of all patterns in the trigger part of rule, R.
call process-antecedents (ANTECEDENTS, ALPHA); result will be in ALPHA
create p-mem node and attach it to ALPHA.

endfor
end build-Rete

The procedure build-Rete simply calls the procedure process-antecedents for each
rule of the problem solver. Process-antecedents creates the Rete network corresponding
to given rule, augments it with the main netwc;rk, and returns the last alpha memory node
created for it. Before processing the next r:ule, build-Rete creates the p-mem node and
attaches it to the last alpha memory node generated by process-anfecedents.

Next, welwill consider process-antecedents in detail,
process-antecedents (ANTECEDENTS, ALPHA)

for each pattern, A, in ANTECEDENTS do

call create-ich-&-t-const (A ,ALP}M' 1) ; the result will be in ALPHA
push ALPHAI onto a temporary stack, L

endfor

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

42

let ALPHA = first alpha in L
pop alpha flrom the stack, L
while L is not empty do
call anded (first alpha in L, ALPHA) ; the result will be in ALPHA .
pop aipha from the stack, L
endwhile
end process-antecedents
This procedure process-antecedents calls two procedures. First, it calls create-
ich&-t-const, which takes one antecedent from the list of all antecedents of the rule
under examination, creates the necessarily type-checking and t-const nodes, and returns
the last alpha memory node created for it (ALPHAT1).Then, it calis the procedure anded
which takes the first two alpha memory nodes from the list, L, joins the two alpha
nodes using AND node, and returns the output memory (ALPHA) of the AND node.
This output memory is then used by process-antecedents to join with the next alpha
memory node in the fist, L. This process continues until all alpha memory nodes in the
list, L, are anded.
Next , we will consider the create-tch&-t-const in details.
create-ich&-t-const{A , ALPHA)
let NAME = the name of the antecedent, A.(fi m‘ syntbol):
search for a previously created type-checking node with the same NAME.
if it exists
let TCHECK = the old type-checking node
else

create a new type-checking node

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

43

lei TCHEECK = the new type-checking node
attach TCHECK to the ROOT node
endif
Jet CHECK1 = generate constant fest(A)
let CHECK2 = generate variables equality test(4)
let CHECK3 = the external test function associated with this antecedent
if CHECK1,CHECK2, and CHECK3 are all emply then
if rhere; exists an alpha memory node associated with TCHECK
let ALPHA = the old alpha memory node
else
create a new alpha mentory node, ALPHA
attach ALPHA to TCHECK.
endif
else { CHECK1,CHECK2, or CHECK3 are nof empty }
look foz: a previously created 1-const node which perform the same tests and
attached to TCHECK
if such a node exists
let ALPHA = the alpha memory node attached to the old t-const node
else
create a new t-consi node
let T-CONST = the new t-const node
create a new alpha memory node for T-CONST
set ALPHA = the new alpha memory node.

endif

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

44

endif
end create-ich&-t-const
The procedure create-tch&-t-const, analyzes the antecedent under consideration
carefully, in order to find if there already exists a suitable type-checking node and t-
const node, if so; it will return the old ones. (io maximize the sharing between the rules).
If no suitable nodes were found then a new nodes are created.
anded (ALPHAl , ALPHA2)
let INTER-TIEST = generate inter-fest between ALPHEA} ,ALPHA?
lock for an AND-node associated with ALPHAI and ALPHA2, and have the same
INTER-TEST | |
if such a node exists
let ALPHAZ = the output memory of the old A ND-node
else |
create AND-node
let ALPHA2 = the oufput meniory of the new AND-node
endif
end anded
This procedure simply takes two alpha memory nodes as input, looks for an
existent AND-node which perform the same inter-test needed between the two input
nodes (ALPHA1, ALPHAZ). if such a node doesn’t exist, the procedure creates a new
one and returns the output memory for the and node, otherwise it returns the output
memory of the old one.
3.2.4 The Reasoning Process
The reasoning process will start immediately after the Rete network is completely build,

it begins by forming ‘a queue, QUEUE, that contains all the initial working memory

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

45

element (WME) (the initial assertions that represent simple facts of the problem). Then
each WME is dequeued and inserted into Rete to determine the conflict set. This
process continue until all WME’s have been dequeued and matched by Rete i.e. until
QUEUE is empty.

The conflict set is then examined to select a rule to fire (resolve conflicts). Weuse a
simple conflict resolution strategy; we choose the last rule enter the conflict set i.e. last
in first out (LIFO). Firing the chosen rule may result in a new assertion to be inserted
into {matched by) Rete, which in turn may affect the conflict set. Then a new rule is
chosen from the conflict set and fired. This cycle continues until the conflict set becomes

empty, at that point the reasoning process is complete (figure 10 illustrate the process).

@ enqucue all the initial working memory element into the QUEUE

enqucue the new assertion apply the chosen rulely
Queue [*
dequeue a| WME and 1 Resolve Conflict (LIFO)
insert it info Rete
Rete
(Match)

Insert the
resull into

Conflict Set

Figure 10 : The Reasoning Process
The reasoning algorithm is given below: (see reason.lsp in appendix 1.4 for lisp
implementation f"or the algorithm).
Let QUEUE refers to the queue used to store all the unprocessed assertions,

CONFLICT-SET refers to the conflict set.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

46

start-reasoning (QUEUE)
let CONTINUE = true
while CONTINUE do
while QUEUL is not Empty do’
let DATUM = dequeue (QUEUL)
call process-datum (DATUM)
endwhile {QUEUE not empty}
let CONTINUE = jalse
while CONFLICT-SET is not Empty do
INST = pop(CONFLICT-SET)
fire the instance INST
if a new datum is inserted in the QULUE
let CON TINUE = true
exit from the while loop
endif
endwhile {conflict set not empty}
endwhile
end start-reasoning.
Next, the procedure process-daiun which process eacl} datum enter the Rete
network is descril;ed below.
process-datum (DATUM)
let TCHECK = the corresponding type checking node for DATUM
if there is no TCHECK for DATUM

push DATUM in the derived memory if the DATUM does not exisi previously

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

47

refurn
endif
for each node, NODE, that follows TCHECK do
if type(NODE)} = alpha memory then
if DATUM not in NODE then
insert DATUM in NODE
call prqcess-agoha(NODE, DATUM)
endif
else { Itype(NODE) = {-const node }
if DATUM not in the alpha memory associated with NODE then
if DATUM satisfy all tests in NODE then
" let ALPHA = alpha memory associated with NODE
insert DATUM in ALPHA |
call process-alpha(ALPHA, DATUM)
endif
endif
endif ; {type(NODE)}
endfor
end process-datum
The procedure -process-datum, searches for a type-checking node for the input
datum, if there is no such node, this means that this datum is a derived datum not used in
the reasoning process, therefore, it must be stored in a special place for derived
assertions (the derived field in REPS).
The type of the node that follows the type-checking node can be an alpha memory

node or a t-const node (look for the definition of the type-checking structure). When the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

48

next node is an alpha memory node, the datum must be inserted in the memory if it was
not there. In the other hand, if the next node was at-const node, the datum can be
inserted in the alpha memory of the t-const node only if the datum passes all the tests
and was not already stored in the alpha memory node.
process-alpha (ALPHA , NEW-TUPLLS)
if there exist left AND nodes associated with ALPHA then
call process-l-ands (ALPHA, NEW-TUPLES)
endif
if there exist right AND nodes associated with ALPHA then
call process-r-ands (ALPHA, NEW-TUPLES)
endif
if there exist p-mem nodes associated with ALPHA then
call process-p-mem (ALPHA, NI W-TUPLES)
endif
end process-aipha
The procedure process-alpha, calls the suitable procédure depending on the node
that follows it, which could be left AND-node, right AND-node or p_mem node.
[;rocess-l—andf (ALPHA, NEW-TUPLES)
- for each left ands, LAND associated with AL;’HA do
call join(NEW-TUPLLS, tuples in the other input memory for LAND, NEW-
JOINED-TUPLES)
if NEW-JOINED-TUPLES is not empty
insert NEW-JOINED-TUPLES in the output memory of the LAND

call process-alpha (output memory of LAND , NEW-JOINED-TUPLLS)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

49

endif
endfor
end process-i-ands
Procedure process-I-ands joins the new tuples with ail tuples that exist in the other
input of the AND-node if they pass the inter-tést in t'ile AND-node under consideration,
All the new joined tuples are inserted in the output memory of the AND-node. Finaily,
the procedure call process-alpha to process the new joined tuples. The procedure
process-r-ands is the same as process-l-ands procecure with some minor modifications
(use right AND instead of [eft AND).
process-p-mem (ALPHA, NEW-TUPLLS)
Sfor each p-mem, P-MIZM ,associated with ALPHA do
Jor each datum, DATUM, in the NEW-TUPLLS do
if the DATUM satisfy the external function test then
create instance and push it to the conflict set
endif
endfor { for each datum}
endfor { for each p_mem}
end process-p-ment
Procedure process-p-mem checks each new datum to see if it satisfies the external
test function (if it exists), if the datum satisfies the test, it will used to create a new
instance that will be pushed in the conflict set.
join (LTUPLES ,RTUPLES, RESULT)
Jor each LTUPLE in the LTUPLI do

Jor each tuple, RTUPLE in RTUPLES do

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

50

if LTUPLE and RTUPLE satisfy the join test
Join theutwo tuples and insert the joined tuple in RESULT
endif
endfor {for each RTUPLL}

endfor {for each LTUPLE}
end join |

Procedure join joins each tuple in one set with all the tuples in the other set. If the
joined tuple passes the inter-test between the two tuples it will be stored in the cutput
memory node, RESULT.
3.3 ATMS : Structures and Algorithms
ATMS performs the following basic operations:
1. Creating a node corresponding to each datum in tﬁe problem solver.
2. Adding a new justification to the dependency network.
3. Maintaining the labels of nodes and handling nogood environments.
3.3.1 Structures
We represent ATMS, nodes, justifications, and environments as structures. These are
described below(de Kleer, 1986 a).
1- ATMS structure
The ATMS structure is used as a place to hold all the component of the ATMS, the
structure used -to aeﬁne the ATMS is (see ATMS.Isp in appendix 2.5 for complete lisp
implementation for ATMS algorithm): l

Nodes: a list that contains all the nodes in the ATMS.

Justs: a list that contains all the justifications installed in the dependency network.

Good-env: a list that contains all the good environments.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

51

Nogood-env: a list that contains all the nogood environments.

Contra-node: a contradiction node used by contradiction rules.
2- Node structure
ATMS creates a nodé in the ATMS for each datum in the proble;n solver, and each node
has the following structure:

Datum: a pointer to the corresponding datum.

Label: a list of environments, this node holds in.

Justs: a list of justifications that support the node.

Consequences: A list of justifications, t'iIiS node belongs to it's antecedents.
3-Justification structure
Justification describes the dependency between the derived nodes and nodes used to infer
them (figure 11 shows the relation between nodes and justifications) . Each justification
consists of :

Antecedents: a set of nodes used in deduction.

Consequence: a node that follows from the antecedents.

Informant: A string describes the deduction.
4- Environment structure
Each label consists of a set of environments, each environment consists of a set of
assumption nodes, and each environment records all node§ that it is label contains this
environment. The structure used to define the environment is:

Assumptions: a list of all the assumptio'n nodes belong to this environment.
Nodes: a list of :.;111 nodes containing thi'ls: environment in their label.

From the previous structure’s definitions we can see how all components of the

ATMS are related to each other, we summarize these relations below:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

52

» Each node stores the label.

o Each label consists of a set of environments.:

o Each environment is a set of assumption nodes.

e Each environment records all the nodes that have this environment in its label,
e Each node records all the justification that use this node.

e Each justification stores the antecedents and the consequence nodes.

o Nodes, justifications, and environments are stored in the ATMS structure.

N1

N2 N5

N3 J2 -

N6

N4

Figure 11 : The Dependency Network
N1, N2, N3 and N4 are assumption nodes.
N5 and N6 are derived Nodes.

J1 is a justification installed on N3.

J2 is a consequence justification for NS.

3.3.2 Label update and Nogood handling

The most expensive operations done by the ATMS are label update and nogood
handling.

1- Label update:

The label update starts whenever a new justification is installed for a node, this operation
is described as follows:

1- Calculate the label of the consequence of the justification by:

« Find a list of all environments that can be formed by union one environment from each

antecedent node’s label (to make it complete).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

53

e Remove from the new list (formed in previous step) any environment that s a
superset of any environment that exists in the new sgt (to make it minimaf).
» Remove all nogood environments from the new list (to make it sound).
2- If the consequence node of the juétiﬁcation is new (have not been already derived),
then
stop {label update is complete}
else, |
¢ Compute the label of the this node, take into account the old label for the node.
» If the new label is the same as the old one, then
stop { no need to update the label for any consequence nodes}
else,
e Look for all the consequence justifications for the consequent node and repeat the
algorithm for each of them.
2- Nogood handling :
Whenever a new justification is installed for the contradiction node (i.e. a new nogood
environment have been found), the following operations must be done: |
1-Compute the new label for the consequent of the justification.
2-All the environments generated from step 1 become nogood and must be moved to the
nogood-env list in ATMS.
3-Remove any of these nogood environments from the labels of nodes that mention
them (recall that these nodes are recorded in the environment structure}.
4-Find all the environments in the ATMS’s good-envs list that are a superset of one of
the new nogood environments, these are also nogood environments, so steps 2 and

3 must be repeated for each of them.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

54

3.4 Loose coupling of ATMS and preduction slystem.

The main points in this algorithm are: (see section 2.4.1 for more details)

1. Fire all contradiction rules first, so that nogood environments are discovered as soon
as possible,

2. The conflict resolution will prevent any instant with empty label for it’s consequence
from firing.

According to the previous points, we must have the ability to distinguish between a
rule instance that corresponds to a contradiction rule from a rule instance that
corresponds to a normal rule. To be able to do that, we have add to the definition of the
p-mem and instance’s structure a new boolean field called contradiction?, this field is
true only if the instance or the p-mem corresponds to a contradiction rule. To have the
ability to compute the label of the consequence of the instance, a new field antecedents is
added to the instance’s structure, which contains the tuples that are used to create this
instance. |

The Rete building algorithm which was discussed in 3.2.3, needed to be slightly
modified so i1t can set the correct value for cenfradiction? field during the build process.
If the created node corresponds to a contradiction rule then building algorithm will set
this field to TRUE, else set it to FALSE.

The reaéoning strategy and the conflict resolution method of the reasoning
algorithm which was described in section 3.2.4 need to be modified. These modifications
are described below.

Two things in the reasoning algorithm must be changed: first, before we apply any
of the normal rules, we have to fire all the instances of contradiction rules. Secor;d, the

conflict resolution must select the last (in) rule instance in the conflict set which has a

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

55

non-empty label (rule instance with empty labels need

not be fired). Figure 12, illustrates

the reasoning process using the loose coupling approach.

enqueuc all the initial working memory element into the QUEUE

sl

apply the chosen rulc

enqueune the new
4l

Queue P assertion

insert it | into Rete

dequeuc a) WME and
no yes

Rete
(match) yes

Inscrt the

noe

Is

Compute the label

Resolve conflicts (LIFO

result into

Apply all contradiction rulesl

Conflict Sct

Figure 12 : The Reasoning Process in Loose Coupling

The following algorithm described the reasoning

process used by the loose coupling

approach in more details (see appendix 2 for complete lisp implementation for loose

coupling algorithm):.
start-reasoning (QUEUE)
let CONTINUE = true
while CONTINUE do
while QUEUE is not Empty do
let DATUM = dequeue (QUEUL)
-call process-datum (DATUM)

endwhile

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

36

act all instance’s of the contradiction rules ﬂ;at are in the conflict set
let CONTINUL = false
while CONFLIC T-SET is not Empty do
call conflict-resolution(CONFLICT-SET, INST)
fire the instance INST
if a new datum is inserted in the QUEUL
let CONTINUE = true
e).;it {from the while loop}
endif
endwhile {conflict set is not empty}
endwhile {continue}
end start-reasoning
conflict-resolution (CONFLICT-SET, INST)
while CONFLIC1-SET is not empty do
let INST = pop (CONFLICT-SET)
let LABEL = the label of the consequence node in INST
if LABEL is not empty then refurn

endwhile
end conflict-resolution

Finally, we can imagine the loose coupling system as two separated systems; a
Rete-based production system and an ATMS. They are communicating with each other

in three events; these are summanzed in table 1.

Event Production system Action ATMS Action
1 e apply a| osend the corresponding | e find the new nogood
contradiction justification to ATMS. environments.
rule. & remove those
environments from the
labels,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

57

[}
Event Production system Action ATMS Action
2| e conflict e ask the ATMS to compute | - » compute the Jabel and
resolution, the label of the return the result.
consequence of the rule
instance,
3| e apply al esend the corresponding | e install the justification
normal rule. justification to ATMS. in the dependency
network.
e update the label of all
the related nodes.

Table 1 : ATMS and Production system Interaction

3.5 Tight coupling thé ATMS and production system: Morgue System.

The main points in Morgue system can be summ.arized as follows (see section 2.4.2 for a

detail discussion of the Morgue system):

1. Compute the label of each datum in a Rete memory node.

2. Remove any datum with empty label from memory nodes.

3. Execute contradiction rules as soon as they}are instantiated (i.e. become applicable).
From the previous points, we can make the following observations;

1. All responsibilities of the ATMS are integrated within the Rete-based production
system. ,

2. The labels are associated with tuples rather than nodes.

3. A justification is installed in the Rete-based production system instead of the ATMS.
So we have to make some modifications on some structures used in loose coupling
approach, These mgdiﬁcations are listed below;

1- Add a new field to all Rete nodes, called contradiction?, this field will be set to

“true” ifthis node is shared by a contradiction rule, so that we can give these nodes high

priority during matching process in order to fire contradiction rules as soon as they are

instantiated.

v

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

58

2- Use datum instead of rnode in all structures used in the ATMS.
3- The datum structure is redefined as :

Fact: The asserticn that this datum represents.

Assumption?:A Boolean field which indicate whether or not the corresponding

datum is an assumption.

Alpha-lis;?: A list of all memory nodes, that a copy of this datum can be found in.

Justs: A list of all justiﬁcations‘that support this datum.

Consequences: A list of all justifications that this datum is one of their

antecedents
Label: The label of the datum.
Del: Flag to indicate, whether or not this datum must be deleted (because it’s label
15 empty).

For the ATMS, all it’s operations (label update, contradiction handling), is done
directly on the tuples in the production systems.

Some changes must also be made on the Rete building algorithm, these changes are
listed below:

1. Set the contradiction? field to “true” if this node belongs to (or shared with) a
contradiction rule.

2. Rearrange the list stored in the next-nodes field, so that the contradictory node
appears at the beginning of the list. This is very important because when the reasoning
algorithm decides to forward the datum to the next node(s) in the network, this datum
will be forward first to the contradictory node (if it exists). In this way, the
contradiction rule is given priority to be instantiated and fired before other normal

rules.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

59

All these modifications are described rin more details by the following algorithm:
(see appendix 3 for complete lisp imp!emenlaﬁon for Morgue algorithm), let QUEUE be
a queue for all initial working memory elements.
start-reasoning (QULULE)
let CONTINUE = true
while CONTINUE do
while QULUE is not Emply do
dequeue (QUEUE , DATUM)
call process-datum (DATUM)
endwhile {QULEUL is not enipty}
let CONTINUE = false
while CONFLICT-SET is not Empty do
call conflict-resolution(CONFLICT-SET, INST) {to select a rule instance}
fire the rule instance INST
if as a result a new datum is derived enquene it in QUEUE
let CONTINUE = true
exit from the while loop
endif
endwhile {conflict set is empity}
endwhile {CONTINUL}
end start-reasoning
In start-reasoning procedure, nothing is mentioned about contradiction rules, and
that is because they are fired as soon as they are instantiated, and will not be stored in

the conflict set. The conflict resolution strategy select the last rule instance enter the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

60

f
conflict set, note that there is no need to check the label of the consequence because it

can not be empty.

The procedure process-datum deals with two cases: First, if there is no type
checking node for the given datum, in this case the datum must be inserted in a special
memory node called derived memory if it is not already stored there. Ifit is already
stored in glerive_d memory we just update its label. Second, if there is a corresponding
type checking node, then we have to check the datum against the four cases described in
table 2. This is_déne by the procedure check-single-tuple. Note that the tests in a t-const
node will not be reexamined if the datum already exists in the memory node.
process-datum (DATUM) \

let TCHECK = the corresponding type checking node for DATUM

if there is no TCHECK for DATUM

call check-single-tuple (DATUM, DERIVED-MEM)

return !

endif
Jor each node, NODE, that follows TCHECK do
if type(NODE) = alpha memory thert
call chelck-single—tuple (DATUM, ALPHA4)
else { type(NODE) = i-cons! node }
let ALPHA = the alpha memory raoa"e associated with NODE
if DATUM is in ALPHA then call check-single-tuple(DATUM,ALPHA)
if DATUM is not in ALPHA and it satisfies all tests of NODE then
call check-sing!e-tuplé (DATUM, ALPHA)

endif

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

61
endif
endfor
end process-datum
When a datum is to be matched (i.e. inéerted into Rete), the Morgue system must
take into account 4 different cases; these cases are simmarized in table 2 along with the
necessary action to be taken. These cases are dealt with by check-single-tuple and check-

Joined-tuple.

Cases Action
1 { & The given datum exists in a memory | o justify the datumi.e. link it to the
node and corresponding justification

e the new label of the datum is the
same as the old label.
2 | o The given dutum exists in the | e justify the datum.

memory node and o update the label of the old
e the new label of the datum d1i!ers datum.
from the old label. o e propagate through the Rete

network for label update.

3 | e The given datum does not exisj in| o push the datum iy the
any memory node and ’ corresponding memory no ﬁe
e its label is not empty. e justify the datum.

« propagate _through the: Rete
network for join anc! fabel
update.

4 | e The given datum does not exij in| e do nothing
any memory node and ’

e its label is empty.) ' !

P T

Table 2: Four casif_' s in The M::;rgue system
check-single-tuple (DATUM, ALPHA) ; . k
if DATUM already exists in ALPE:,’A then { i.e. old datum } .

let NEW = new environme;fi!s geverated after computing the ew label Jor

DATUM, aric do not exist in the old label of DATUM.

Justify DATUM

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

62 |
if NEW is not empty then
update the label of the old datum
call process-alpha(ALPHA, DATUM)
endif
else {new datum}
if the DATUM label is not empty then
insert DATUM in ALPHA
Justify DATUM
call process-alpha(ALPHA, DATUM)
endif {DATUM label is not empty}
endif {DATUM aiready exists}
end check- single-tuple
Procedure process-alpha propagate the datum that reaches an alpha memory node
through the remaining part of Rete network. Following an alpha memory node there
could be p-mem nodes, contradiction left AND nodes, contradiction right AND nodes,
normal left AND nodes, and normal right AND nodes. In order to give contradiction
rules more priority over normal rules; process-alpha forwards the datum first to the
nodes that correspond to contradiction rules before nodes that correspond normal rules.
process-alpha (ALPHA , NEW- TUPLLS)
call process-p-mem (ALPHA, NEW- TUPLES)
call process-ands (ALPHA, Contradiction-left AND nodes , NEW- TUPLES)
call process-ands (ALPHA, Contradiction-right AND nodes, NEW- TUPLES)
call process-ands (ALPHA, Left AND nodes, NEW- TUPLES)

call process-ands (ALPHA, Right AND nodes, NEW- 1 UPLES)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

63

end process-alpha

Procedure process-ands is the same as the procedure process-i-ands described in
section 3.2.4, it joins each tuple in NEW-TUPLES with each tuple stored in the other
input memory for each AND node (listed as the second argument), all joined tuples that
pass the inter-test will be stored in the output memory node (if they not already there) for

the AND node, and call process-alpha.

Procedure process-p-mem checks weather p-mem node corresponds to a -

contradiction rule or not, if so, the rule instance must be fired, otherwise, the procedure
stores it in the conflict set.
process-p-meni (ALPHA, TUPLLS)
Jor each p-mem, P-MEM associated with ALPHA do
Jor each datum, DATUM in the NEW- TUPLLS do
if DATUM satisfy the external test function then
if P-MEM corresponds to a contradiction rule then
create a rule instance, INST
call act-contradiction-rule (INST}
else
create instance and push it into the conflict set
endif { p-mem correspond }
endif {DATUM satisfy }
endfor {feach DATUM}
endfor {each p-mem}
end process-p-mem
Procedure JOIN, takes two list of tuples, and join each tuple in the first list with all

tuples in the second list, for each joined tuple the procedure calls check-joined-tuple to

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

64

check the joined tuple against the join test and against the four cases described in table 2
and takes the corresponding action for each of|them.
join (LTUPLES ,RTUPLES ,ALPHA, RESULT)
Jor each datum, LDATUM in the LTUPLES do’
for each datum, RDATUM in RTUPLES do
call check-joined-tuple (LDATUM, RDATUM, ALPHA, RESULT)
endfor |
endfor
end join
check-joined-tuple (LDATUM, RDATUM, ALPHA, RESULT)
let LABEL = compute the label of the joined-tuple-of(LDATUM, RDA1 UM}
if joined-tuple-of(LDATUM, RDATUM) exists previously in ALPHA then
let NE W = new environments exists in LABEL and does not exist in the old
label for the joined tuple.
Justify DATUM
if NEW is not emply then
update the label of the joined tuple
insert the joined tuple in RESULT
endif
else {new dgtum}
if (LDATUM, RDATUM satisfy the join test Jand (LABEL is not emply) then
join the two tuples and insert the joined tuple in RESULT
Justify ::he new compound-tuple

endif

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

65 =

endif
end check-joined-tuple

When a contrad_.iction rule is fired, new nogood environments may be discovered,
therefore the following operations must be done:
1. The nogood handling process in the ATMS must be started (see section 3.3.2 for

more details about nogood handling),
2. For each tulples, TUPLE, that its label become empty as a result of contradiction
handler, the following operation must be done:

for each alpha membry node, ALPHA, that have a copy of TUPLE, (these memory
nodes can be found in alpha-list field in the datum’s structure) follow the consequent
justification for TUPLE, and delete linked tuples that have an empty label, and then
detete the TUPLE itself. :
3.6 Tight coupling the ATMS and preduction sysl.ém: the Hindi System.
As discussed in section 2.4.3, the main ideas in the Hindi system is: store tuples that its
label is empty in a special inactive part (called QUT part) of the same Rete me;nory
node, and tuples with non-empty label in an active part of the memory node (called /N
part). The Hindi system uses time stamp to decide what tuples to use in the join
operation.

When a datum is to be matched (i.e. inserted into Rete), the HINDI system must
take into account six different cases; these cases are summarized in table 3 along with the
necessary action to be taken. These cases are dealt with by into check-single-tuple and

check-joined-tuple.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

60

Cases

: ' Actions

e The given datum is new (does
not already exist in a memory
node) and

o its label is empty.

e store the new datum in the QUT part
of the memory node
e stamp the datum with time stamp -1.

¢ The given datum is new and
e its label is not empty.

e store the new datum in the IN part of
the memory node.

o stamp the datum with the current time.

e this datum must be joined with all
tuples stored in the IN part of the other
input memory of the AND-node.

o justify the datum.

e propagate through the Rete for join
and label update.

e The datum is old (already
exists} and

e the old datum stored in the IN
part of the memory node and

¢ the new label differs from the
old label.

e update the label of the old datum

» justify the datum.

e this datum will not be used in the next
join operations.

» propagate through the Rete for label
update.

¢ The given datum is old and
e the old - datum stored in the IN
part of the memory node and

e the new label is the same as the
old label.

» justify the datum.

e The datum is old and

e the old datum stored in the
QUT part of the memory node
and

o the new label is not empty.

e move the datum to the IN-part of the
memory node.

s update the label of the old datum

e justify the datum.

e join this datum with all tuples that its
time starnp = the time stamp of this

datum’ and stored in the IN part of the
other input memory of the AND-node.

¢ propagate through the Rete for join
and label update,

s

! The Hindi system assert that we need (o join the datumywith all {uples stored in the IN part of

the other input memory of the AND-node whosc its time stamp is greater than the time stamp of this
datum (Hindi-1994). This will prevent the datum from being joined with other tuples stored in the IN
part of the othcr memoty of the AND node that have time stamp equal to the time stamp of this datum,
this will lead to uncompleted result. In our implementation we join with all tuples that have time stamp
greater than or equal the time stamp of the tuple.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

67

6 | e The datum is old and e do nothing

e the old datum stored in the
QUT part of the memory node
and

» the new label is empty.

Table 3: Sixbcases‘in the Hindi system
So we have to make some modifications on the structures and algorithms used in

MORGUE system, these modifications are listed belov;::

1- We use the _ﬁeld del in the datum’s structure to distinguish between tuples stored in
the QUT part and tuples stored in the IN part. If a tuple is stored in the OUT part of a
memory node then its de/ field value must be set to TRUE, otherwise set it to FALSE
(this field was also used in Morgue system to indicate that this datum mulst be
deleted).

2- We add to the datum’s structure a new field to record the time stamp called stime.

3- The join operation deal with three cases: join the tuple with all other tuples in the IN
part of the other input memory of the AND node, join the tuple with all other tuples
in the IN part of the other input memory that have time stamp greater than or equal
to the datum’s time stamp, the third case is when no join operation is needed. To
reflect these cases in the datum’s structure we add a new field called jfime, which has
three cases:

e if jtime = 0, then no join operation is needed for this datum.

e if jtime = -1, then join the datum with all thie tuples stored in the IN part of the
other input memory of the AND-node.

e if jtime <> (0 or -1), then join the datum with all tuples stored in the IN part of
the other input memory of the AND-node, that has time stamp greater than or

equal to the datum’s time stamp.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

68

In order to apply the previous modifications, we can rewrite some procedures
(from the Morgue’s procedures discussed above), the modified procedures are discussed
below(see appenldix 4 for complete lisp implementation for Hindi algorithm):

Procedure conflict-resolution look for the first instance in the conflict set where it’s
antecedents (justification tuple) stored in the IN part of the memory node.
conflict-resolution (CONFLICT-SET, INST)

while CONFLICT-SET is not emply do

let INST = pop (CONFLICT-SLT)
if IN(INST) then return {instance anfecedents stored in the IN part}

endwhile |
end conflict-resolution

Procedure process-datum is not modified hefe, but obviously, it will not have to
reexamine the tests in t-const node even if the datum is in the QUT part of a memory
node. Process-datum call procedure check-single-tuple to check the tuple against the six
cases described in table 3 and take the corresponding action.
check-single-tuple (DATUM, ALPHA)

if DATUM already exists in ALPHA then {old datum }

if in(DATUM) then {DATUM stored in the IN pari}
let NEW = new environments generated after computing the new label for
DATUM, and does not exist in the old label.
Jjustify DATUM
if NEW is not empty then
update the label of the old datum

set jtinte in the old datum to 0 { no join operation is needed }

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

69

call process-alpha(ALPHA, DATUM)
endif
else fout(DATUM}}
if the label of DATUM is not empty then
insert DATUM in the IN part of ALPHA

update the label of the old datum

set jtime for old datum to stime(old datum) {join with all IN tuples in the

other memory which have stime >= stime(old datum)}
Justify DATUM
call process-alpha(ALPHA, DATUM)
endif {if the label of ..}
endif { if in(datum) }
else { new datum }
if the label of DATUM is emply then
insert DATUM in the QUT part of ALPHA
let stime(DATUM) = -1
else { the label is not empty}
insert DATUM in the IN part of ALPHA
let stime(DATUM) = current-time
let jtime(DATUM) = -1 {join with all IN tuples in ::he other memory}
Justify DATUM
call process-alpha(ALPHA, DATUM)
endif { if the label is empiy}

endif { if datum already exist }

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

70

end check—singlé-mple
Procedure process-p-mem is the same as that used by the Morgue system, except that
tuples stored in the IN part only are used to instantiate the rules. Note here, that the
external test function is not reexamined for the tuples stored in the OUT part, but in the
Morgue you have to reexamine the test because all the tuples with empty labels was
deleted.
Join procedure, call check-joined-tuples with a suitable flag according to the value
of jtime field in datum’s structure, all joined tuples will be returned in RESUL"I“
Jjoin (LTUPLES RTUPLLES ,ALPHA, RIESULT)
for each tuple stored in the IN part, LDATUM, from LTUPLLS do
for each tuple stored in the IN part, RDATUM from RTUPLLS do
case jtime(LDATUM)
O:call check-joined-tuple(LDATUM, RDATUM, ALPHA, RESULT,
“nojoin”’)
-I:call check-joined-tuple(LDATUM, RDATUM, ALPHA, RESULT,
“all”)
otherwise
call check-joined-tuple(LDATUM, RDATUM, ALPHA, RESULT,
“part”)
endcase
endfor
endfor
end join
Procedure checkl—joined-rupr‘e checks the joined tuple against the join test and the six

cases (summarized by table 3), and apply the corresponding action for each case.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

71

check-joined-tuple (LDATUM, RDATUM, ALPHA, RESULT, FLAG)
let LABEI; = compute the label of the joined-tuple-of(LDATUM, RDATUM)
if joined-tuple-of LDATUM, RDATUM), D, already exists in ALPHA then
if in(D) then {D stored in the IN part}
let NEW = new environments exists in LABEL and does not exist in the old
label of the joined tuple.
Justify D
if NEW is not emply then
update the label of the old datum
set jtime of the old datum to 0 { no join operation is needed }
insert D in RESULT
endif
else {fout(D)}
if LABEL is not emply then
insert D in the IN part of ALPHA
update the label of the old datum
set jtime of D to stime(D) {join with all IN tuples in the other memory which have
stime >= stime(D)}
justify D
insert D in RESULT
endif {label is not empty}
endif { in(d)}
else { new datum }

if FLAG = “nojoin” then return

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

72

if (FLAG = “part”) and (stime(LDATUM) > stime(RDATUM)) then return
let LABEL = compute the lab’el of the consequence of LDATUM, RDATUM
if (LDATUM, RDATUM satisfy the join test) then
let D = the join of the two tuples
if LABEL is empty then
insert DD in the OUT part of ALPHA
let stime(D) = -1
else {label is not empty }
insert D into the IN part of ALPHA
let stime(D) = current-tinie
let jtime(D) = -1 {joinwith all IN tuples in the other memory}
Justify D
push D to the RESULT
endif {if label is empty }
endif {LDATUM, RDATUM satisfy the join test }
endif (if joined tuple already exist}
end check-joined-tuple
Finally, when a contradiction rule is fired, new nogood environments may be
discovered, therefore the following operation must be done:
i. The nogood handling process in the ATMS must be started (see section 3.3.2 for
more details about nogood handling).
2. For each tuples, TUPLE, that its label become empty as a result of the previous step,
the following operation must be done:

move the datum to the OUT-part of the memory node.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

73,

stamp TUPLE with current-tine.
for each alpha memory node, ALPHA, that have a copy of TUPLE, (these memory
nodes can be found in alpha-list field in the datum’s structure)
follow the consequent justiﬂdation for TUP-LE, and move all linked.tuples that
have an empty label to the QUT part and stamp each of them with current time.
advance the current time.
In the next chapter, we will present an empirical performance study of the

three methods discussed in this chapter.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Chapter 4
Performance Evaluation of

The Algorithms

In this chapter, four problems are solved using the three algorithms explained in the
previous chapters. These are the queen problem, consl.traint satisfaction problem, student
registration, and a modified student registration problem. We present a performance
comparison between the three algorithms. In section 4.1, the queen problem is
discussed. In section 4.2, the constraint satisfaction problem is discussed. In section 4.3,
a student registration system is discussed. In section 4.4, the problem in 4.3 is moclliﬁed
and discussed again. All experiments were performed using a PC with a Pentium-
133 processor and a 32 M-Byte RAM.

4,1 The Queen problem.

The N-queen puzzle is a classic example of combinatorial problems. The problem is:
given an N x N chessboard and N queens, in how many different ways can we place the
queens on the board so that none of them can capture any other? (each must be in
different column, row, and diagonal). For N = 4 there are two solutions illustrated in

figure 13, and the number of solutions rapidly goes up with N.

1 2 3 4 1 2 3 4
i X A X
2| x 2 X
3 X 3| x
4 X 4 X
a b

Figure 13 : 4-queens problem solutions

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

75

Using ATMS to solve the queen problem can help in minimizing the time needed to
find the solution by storing the inconsistent combinations of queen location (nogood
environment) in ATMS so that they never tried again.

4.1.1 Rules
we can solve the problem using two rules, one to detect contradictions, and the other to
generate all the permutations on N queens in N x N chessboard (see appendix 5.1 for
complete lisp implementation for queen probiem).
(Corm'aa'igrion-,mle ClI
((q Ix ?rl Iy 7c1) (q Ix 2r2 Iy 7¢2) :test #'queens-not-ok
==> (rassert-nogood!))
(Rule Ri
((qix1ly?cl)(qlx21ly?c2) (qlx3ly?c3)(qix4ly?cd)
==> (rassert! (loc Icl ?cl lc2 ?¢2 Ic3 7¢3 led 7¢c4)))
Note; the field !;c mean row and ly mean column,
Initial working merﬁory element: all the locations in 4x4 chessboard are needed as an
initial working memory elements (WME), i.e. (g!x 11y 1) to(q !Ix 4 ly 4),

The function “queens-not-ok”, used by the first rule, will take the location of the
first queen (?r1, ?c1), and the location of the second queen (?r2, 7c2) as input, and test
them to see if they are in the same row, column or diagonal, '%f so the rule will fire and
assert a new nogood environment (see appendix 5.1 for a lisp listing of the function).
The second rule generates all the possible situations that 4 queens can be placed on the
chessboard.

The corresponding Rete is shown in figure 14. In the figure, we have one type
checking node, TCHECK, because we have only one kind of patterns. We also have four

t-const nodes, t-constl, t-const2, t-const3, and t-const4, they check the values of the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

76
field !x for 4, 3, 2, and 1 respectively. The figure contains two p-mem nodes: pl

corresponding to the contradiction rule, C1, and p2 corresponding to the normal rule

(not a contradiction rule), R1.

PI-C1) @
(DR

Figure 14 : Rete network corresponding to 4-queens problem

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

77

4.1.2 Results and Conclusions
This section presents a performance comparison of the algorithms on different versions
of the queen problem (3, 4, 5, 6-gueen problem) in terlm of time and basic operation.

Table 4, 6, 7 and 8 show the execution time needed by each algorithm and the
number of join operations performed by each algorithm to solve 4-queen, 3-queen, 5-
queen and 6-queen problems respectively. Graphical representation of table 4 is shown
in figures 15 and 16. Table 5 shows the nuinber of assertions (tuples) in each memory
node in all algorithms to solve the 4-queen prdlblem.

Tables 4, 5, 6, 7, and 8 illustrate how the tight coupling approaches are more
efficient than the loose coupling. That is apparent I'in the time needed, join operations,
and the number of tuples stored in the memory nodes. Table 5, shows that the number of
tuples stored in the memory nodes by tight coupling approaches are less than the loose
coupling approach. Tables 4, 6 and 7 show that the time needed by the tight coupling
approaches is less than the time needed by the loose coupling approach, and the same
thing can be said for the number of join operations. This is due to the fact that the tight
coupling approaches do not use tuples with empty label during the match step, which will
reduce the number of tuples involved in the join operations and hence reduce the
execution time,

Tables 4, 6, 7, and 8 also show that the Morgue system and the Hindi system
performed the same number of join operations, and therefore required the same
execution timé (3, 4, and 5-queen problem). 'i‘his is expected because the Morgue system
didn’t need, in this case, to rejoin any tuples.

Table 8, shows that the execution time needed‘to solve the 6-queen problem using
the Hindi system is less than the time needed by the Morgue system. This is because the

4

Hindi system needs only to change a flag in the datum structure when it needs to move

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

78 .

the tuple to the QUT part, and this operatiém takes less time than the delete operation
performed by the Morgue system.

Table 6, also shows that the loose coupling aﬁproach failed to solve the 6-queen
problem on our system, because it needs more memory space to store the tuples with
empty label. | :

Table 5, also shows that the Hindi system need more space than the Morgue

system, this is expected because the Hindi system stores tuples with empty label in the

QUT part of the alpha inemory.

Time(sec) Join
Loose coupling 58 472
Tight Morgue sys 41 192
coupling | Hindi sys 41 192

Table 4: Time and join opeyation needed for 4-queen probler

ol |a2 |03 [ndjaS| a6 [a7la8| a9 | |
Loose coupling 16 | 4 4 |4 |4 |136]|16][64]256] ¢
Tight | Morgue sys. 16| 4| 4 (4 [-4]60 6] 412
) Hindi | IN 16§ 4 4 1414|6064 2
-ing —:;
SYS. OUT| O 0 0 [-0[0] % [10]20] 14
Table 5: Number of assertions u“ alpha memory nodes (4-queen Pi oblem)
‘Time(sec) Join X
Loose coupling 3.63 4 81 |
Tight Morgue 3.57 60 i
system ;
coupling | Hindi 3.57 60
systecm

Table 6: Time and join ope}-ation needed for Z-guezn proble;n

b
Y

Time(sec) Join
Loose coupling 950 4225
Tight Morgue 345 540
system -
coupling | Hindi 339 540
system

Table 7: Time and join operation nceded for S-queen problem

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

79

Time(sec) | Join
Loose coupling no more room for lisp objects
Tight Morguc 1905 1554
system
coupling | Hindi 1886 1554
system

Table 8: Time and join operation needed for 6-queen problem

Execution time comparison

\0——0

& N
(=] o
L 1

(=]
1

Execution time
w (SBC) o
(-] (=]

-
k=]
L

L=

Loose
coupling
Morgue sys

Hindi sys

Figure 15 : Execution Timec required to solve the queen problem

Join Operation comparison

500 -
450 +
400 4
350 A
300 +
250 -
200 -
150 4
100 4

60

Join operations

-]

Loose
coupling
Morgue
SYs
Hindi sys -

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Figure 16 : Join operation in Queen problem

30

4.2 A Constraint Satisfaction Problem
A constraint satisfaction problem is defined as a triple consisting of: a finite set of
variables, a finite set of candidate values for each variable, and a finite set of constraints
on the values that variables can be assigned simuitaneously (Bodington, 1988). The aim
is to find a set of consistent value assignments to thel-variables that do not violate any of
the constraints. I

An example taken from Bodington, 1988, is shown in table 9. This example has
only one solution , the variables a, b, and c should be assigned the values 5, 2 and 1

respectively.

Variable Domain Constraints
a {3,5} at+c>4
b 12,3} b+e<5
c {1,3,5} a+b+c<9

Table 9: An example of a constraint satisfaction problem

Using ATMS to solve the constraint satisfaction problem, can help in minimizing
the time needed to find the solution by storing the inconsistent assignments (nogood
environment) in ATMS so that they never tried again.

4.2.1 Rules

We use four rules, (see appendix 5.2 for complete lisp implementation for constraint
satisfaction problem) the first three to detect contradictions, and the fourth to generate
all the possible assignments of the variables. The corresponding Rete is represented in
figure 17.

(Contradiction-rule C1

((ass Ivar ¢ Ival ?v2)(ass Ivar a Ival ?v3)) :test #'c-a-not-ok

==> (rassert-nogood!))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

81

This rule says: if variable C is assigned a value ?v2, :and a variable 4 is assigned a value
?v3 , and these assignments didn’t satisfy the first constraint represented by the function
“c-a-not-ok”, then the rule will fired to assert a new nogeod environment,
(Contradiction-rule C2

((ass Ivar b Ival 2v1) (ass Ivar ¢ Ival ?v2)) :test #'b-c-not-ok

==> (rassert-nogood!))
This rule says: if variable B is assigned a value ?v/,and a variable C is assigned a value
?v2 , and thesle assignments didn’t satisfy the second constraint represented by the
function “b-c-not-ok”, then the rule will fired to assert a new nogood environment.
(Contradiction-rule C3

((ass Ivar b tval ?2v1) (ass var ¢ Ival 7v2) (ass Ivar a Ival 7v3) :test #'b-c-a-not-ok
==> (rassert-nogood!))
This rule says: if variable B is assigned a value ?v/, a variable C is assigned a value ?v2,
and a variable 4 is assigned a value ?v3, and these assignments didn’t satisfy the third
constraint représented by the function “b-c-a-not-ok”, then the rule will fired to assert a
new nogood environment.
(Rule R1

((ass Ivar b Ival 7vi) (ass Ivar ¢ Ival 7v2){ass Ivar a Ival 7v3))

==> (rassert! (sol la 7v3 Ib ?vi lc 7v2)))
This rule will generate all the value assignments permutaﬁons for the three variables.
initial-working-memory : (ass lvar a lval 3) (ass var a tval 5) (ass tvar b lval 2)

(ass !var b lval 3) (ass lvar c Ival 1) (ass !var ¢ Ival 3){(ass !var ¢ Ival 5))

The functions c-a-not-ok, b-c-not-ok, and b-c-a-not-ok check the constraints in

the problem and return true if some constraint is not applicable(see appendix 5.2 for a

complete listing of these functions).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

82

-
P-C3

Figure 17: Rete network corresponding to constraint satisfaction problem

4.2.2 Results and Conclusions

This section presents a performance comparison of the algorithms on the constraint

satisfaction problem described in 4.2.

Table 10, shows the execution time needed by each algorithm, the number of join

operations needed to solve the problem, and the number of times the contradiction rules

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

83

were fired. A graphical representation is shown in figures 18 and 19. Tablel1 shows the
number of assertions maintained in each memory node by the algorithms.

Table 10, shows that the time needed to solve the problem by the tight coupling
approaches is less than the time needed by the loose coupling approach, and the same
thing can be said for join operation. Table 10 also shows that Morgue system and Hindi
system required the seme execution time, because in this problem it doesn’t need to
perform rejoin operation.

Table 10, shows that in the tight coupling approaches (Hindi and Morgue system),
the number of contradiction rules that was fired are less than the loose coupling
approach, that is because the first and the second contradiction rule is a part of the third
one (shared), and any joined tuples used to fire the first or the second contradiction will
not be used to fire the third contradiction rulei

Table 11, shows that the Hindi system need more space than the Morgue system,

this is expected because the Hindi system stores tuples with empty label in the out part

of the alpha memory.
Time(sec) Join Contradiction
fire

Loose coupling 1.3 24 13
Tight Morgue 1 22 6

system
coupling | Hindi 1 22 6

system

Table 10: Time, join operation, contradiction fire needed for

Constraint satisfaction problem

ol (o2 [a3 [ad oS | a6
Loose coupling 2 3 2 6 6 12
Tight | Morguesys | 2 3 2 2 5 1
coupl- | Hindi | IN 2 3 2 2 i35 1
ing SYS Tl 0 [0| 0 4|1 9

Table 11: Number of tuples in alpha meniory nodes (Constraint)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

84

1.4 -
1.2 -

1
g ‘gﬂ.s -
3 ~0.6 4
0.4 -
0.2 -

tion time
5

Exec

Execution time comparison

T

Loose
coupling
Morgue sys

Hindi sy

Figure 18 : Execution Time for Constraint satisfaction problem

30

Times
20

10

:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Join and Coatradiction comprison

.\;—o

Loose
coupling
Morgue
sys

Hindi sys -

—&— Joln
& Contradlction

Figure 19: Join operation and contradiction fire
for Constraint satisfaction problem

85

4.3 Student Registration system-1 : a typical Database system

In the previous two examples, we have shown that the tight coupling approaches are
more efficient fhan the loose coupling approach. In order to present the advantages of
the Hindi system, we need an application that needs to rejoin tuples. A database
application is a good example, because of the need to add and delete data (tuples). To
delete any tuple, we form a nogood environment that consists of the corresponding
assumption, and to add tuple we insert the tuple in the Rete network to start reasoning,

Integrating ATMS-based production system with database system has been
presented by Hindi, 1994, in a new method to couple an active databases and an ATMS
expert systems. The approach called “monitor coupling”. In monitor coupling the ATMS
revises the beliefs of the reasoning system every time some relevant data in the database
is modified. Active rules in the database monitor the data relevant to the reasoning
system and alert it when any relevant data is modified or new relevant data becomes
available,

In our example, we used a Student registration 5ystem. In this system the student is
trying to register/drop some elective courses. These elective courses are divided into
groups and subgroups, for example, one group of courses consist of four subgroups; the
student can register only one course from each subgroup. When he registers any course
from some subgroup.all the remaining courses in the subgroup can’t be registered, but if
the student fails the course all the courses in the same subgroup that he was not aliowed
to register become available for him. The system aims at helping the user to register the
allowed elective courses. The user only use (register course-number) to register a
course, and (retract course-number) to drop a course, it’s the responsibility of the

system to check the allowance to register this course, and so if it’s not retract it.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

80

The registration system is a good example for a dynamic data, that can be used to
compare between the two tight coupling approaches. Here, we will not compare the tight
coupling approaches with the loose coupling approach, beca-mse it is obvious, that it will
not outperform the tight coupling approaches. Instead we will focus on comparing the
Hindi sysiem and the Morgue system.

4.3.1 Rules
In this subsection we present the rules' we usedin our system (see appendix 5.3 for

complete lisp implementation for registeration problem).To register any course, all the
following rules I;nust be satisfied:
Note : the syntax used in TryReg is: IN: the course number, |G-1: the main group
number, !G-2 :the subgroup number.
** you can’t register two courses from the same subgroup within the same group
(group 2).
{Contradiction-Rule G2-1

((TryReg IN ?x1 1G-1 2 1G-2 7z)

(TryReg IN ?x2 1G-1 2 1G-2 ?z)) :test #'diff-courses

==> (rasseri-nogood!)) |
** you can register only four courses from group 2.
(Contradiction-Rule G2-2

((TryReg IN ?x1 1G-1 2 1G-2 ?7z1) (TryReg IN ?x2 1G-1 2 1G-2 7z2)

(TryReg IN .?;x3 1G-121G-2 723) (TryReg IN ?x41G-1 2 IG-2 724)

(TryReg IN 7x5 IG-1 2 1G-2 725)) :test #'diff-courses

==> (rassert-nogood!))

! these rules was taken from the Art faculty of Jordan university.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

87

** you can’t register more than two courses from the same subgroup within the
same group (group S5).
(Contradiction-Rule G5-1
((TryReg IN 7%1 1G-1 5 1G-2 ?z) (TryReg IN ?x2 1G-1 5 1G-2 72)
(TryReg IN ?7x3 IG-1 5 1G-2 ?z)) :test #'diff-courses (x1 <> x2 <> x3)
==> (rassert-nogood!))
** you can register only five courses from group 5'.
(Contradiction-Rule i5-2
((TryReg IN ?x1 1G-1 5 1G-2 ?21) (TryReg IN ?x2 IG-1 5 1G-2 7z2)
(1ryReg IN ?x3 1G-1 5 1G-2 723) (TryReg IN ?x4 IG-1 5 1G-2 724)
(TryReg IN ?x5 1G-1 5 1G-2 7z5)
(TryReg IN ?x6 1G-1 5 1G-2 ?z6)) :test #'diff-courses
==> (rassert-nogood!))
** you can’t register more than four courses from the same subgroup within the
same group (group 3).
(Contradiction-Rule G3-1
((TryReg IN ?x1 IG-1 3 1G-2 ?z) (TryReg IN ?7x2 1G-1 3 1G-2 .?z)
(TryReg IN ?x3 IG-1 3 1G-2 ?2) (TryReg IN 7x4 1G-1 3 IG-2 ?z)
(TryReg IN ?x5 1G-1 3 IG-2 ?2)) :test #'diff-courses
==> (rassert-nogood!))
** you have to register seven courses from group 3, and they must be distributed
among all the subgroups.
(Contradiction-Rule G3-2

((TryReg IN ?x1 IG-1 3 1G-2 721} (TryReg IN ?x2 IG-1 3 1G-2 722)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

88

(TryReg IN ?x3 IG-1 3 1G-2 ?23) (TryReg IN ?x4 1G-1 3 1G-2 7z4)
(TryReg IN ?x5 IG-1 3 1G-2 ?z5) (TryReg IN 7x6 1G-1 3 1(3-2 726)
(TryReg IN 7x7 1G-1 3 1G-2 ?27)) :test #'G3-2 (Z’s must be different)
==> (rassert-nogood!))
** you can register only seven courses from group 3.
(Contradiction-Rule G3-3 !
((TryReg IN ?x1 1G-1 3 1G-2 7z1) (TryReg IN ?x2 IG-1 3 1G-2 722)
(TryReg IN ?x3 !G’-! 31G-27z3) (TryReg IN ?x4 IG-1 3 1G-2 7z4)
(TryReg IN ?x5 1G-1 3 1G-2 725) (TryReg IN 7x6 !G-1 3 IG-2 ?z6)
(TryReg IN ?7x7 1G-1 3 IG-2 727)
(TryReg IN ?x8 1G-1 3 1G-2 ?28)) :fest #'diff-courses
==> (rasseri-nogood!))
* if the student try to register some courses :.\nd this course is available then asseit
TryReg predicate for tlhis course in order tc; check all the constraint.
(Rule Ri
{(Register !Cou ?x)
(Course INo ?x IG1 ?y IG2 ?z2))
==> (rassert! (TryReg IN ?x IG-1 ?y IG-2 7z}))
* if the course passes all the above coélstraints then assert YouCanReg for this
course.
(Rule R2
((TryReg IN :?xf 1G-1 2yl 1G-2 721} (TryReg IN 7%2 1G-1?y2 1G-2 722)
(TryReg IN ?x3 1G-1 ?y3 IG-2 ?z3) (TryReg IN ?x4 1G-1 ?y4 1G-2 7z4)

(TryReg IN ?x5 1G-1 2y5 IG-2 ?25) (TryReg IN ?x6 IG-1 ?y6 1G-2 726)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

89

(TryReg IN ?x7 1G-1 ?2y7 1G-2 ?z7) (TryReg IN ?x8 1G-1 ?y8 1G-2 728))
==> (rassert! (YouCanReg INa ?x1}))

%)
o)

AOE

16:01610161036]0;6:036

b2
1

OO OEH O

(D9—2)

Figure 20: Rete network corresponding to Registration problem(part of it)
Initial working memory element: one Course assertion for each course. For example, a
course with ID 1100, that belongs to the second subgroup of the first group is

represented by: (Course INo 1100 !Gl 11G2 2)). Our system use 73 courses. (see

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

S0

appendix 5.3 for more detail about the rules arlld WME). Part of the corresponding Rete
is shown in figure 20.

4.3.2 Results and Conclusions

We have used the following assertions to compare the performance of the Morgue and
the Hindi systems: |

(course !No 1100 1G1 1 1G2 1){course INo 4100 |G1 2 1G2 1) (course INo 5100 1G1 2

IG2 1) (register 1100) (register 4100) (register 5100} (retract 5100) (retract 4100)

(register 5100)

- Time(sec) Join Label computation
Morguc system 179 1841 2012
Hindi system 109 1389 1724

Table 12 : Tfme, Join operation, Label Computation comparisen for registration
system-1

Table 12 shows the time needed to Iﬁsolve the same problem using the two
approaches, as will as the number of join operations, and label computation needed to
solve the problems. A graphical representation of the results is shown in figure 21
(without a test function), and figure 22. Another examples are given in section 4.3.2, and
the results are given in Tables 14 and 16.

It’s clear from Tables 12, 14 and 16 that Hindi system is more efficient than the
Morgue system. It saves a lot of time because it performs less j;;in operations, and label
computations. In Hindi system all the join operations and label computations done to
register a course are saved even if the course is retracted. The saved work can be used
whenever the course is registered again without the need to repeat it again. While in
Morgue system all the works done in the first registration are discarded and all the works

is repeated again, and that was the main improvement of the Hindi system.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

91°

Execution time comparison
1200 -

1000 +

800 4 —O— without test function
—&—with test function

S 600 -

%)

400 -

Execution time
(

200

Morgue sy
Hindi sys3

_Figure 21 : Execution Time for Registration problem

Join and Label Comprison

3000

—&— Jain
—&—Label

Times
2000

1000

o

Morgue
5ys
Hindi
SYS

Figure 22 : Number of Join operation and Label computation comparison for
Registration problem

4.4 Student Registration system-2: a typical Database application

Recall from chapter 3, that the Hindi system does save the work done in the match
process, while Morgue system may need to rematc:,.h some tuples. In order to study the
effect of this on the registration system, , we augmented a test function that must be
tested whenever a pair of tuples are joined. Here we used the same problem in the

previous section and a delay function as a test function for evaluation process.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

92

The existence of such functions is familiar in Al problem, since we need sometimes
to restrict the rules to match only assertions that satisfy the test function.
4.4.1 Results and Conclusions
The results are shown in Table 13, and the corresponlding graphs are given in the figure

21,22. Another examples are given in section 4.3.2, and the results are given in Tables 15

and 17.
Time(sec) Join Label
computation
Morgue system 1086 ' 1841 2012
Hindi system 130 1389 1724

Table 13 : Execution Time, Join operation, and Label Computation comparison
for registration system-2

Tables 13, 15, and 17 show that the Hindi system takes a ~12% of the time needed by
the Morgue system to solve the problem. The only thing that have been added to this
system compared to the previous example is the test function, so the large difference of
time is expected because the Hindi system does ‘test the function only once, where
Morgue s;rstem does it every_time it needs to rejoin n;ples.

4.4.2 Different data for the registration problem

The following examples supports the previous conclusions:

Example A:
(course INo 314 IG151G2 1) (course INo 315 !G151G2 1) (course 'No 411 1G]

5 1G2 1) (register 314) (register 315)(register 411)(retract4i1) (retract 314)(register

411)
Time(sec) Join Label
computation
Morgue system 318 2972 3200
Hindi system 278 2430 2912

Table 14 : Time, Join operation, Label Computation comparison for registration
system-1 (example a)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

93

Time(sec) Join Label

computation
Morgue system 1840 2972 3200
Hindi system 297 2430 2912

Table 15 : Time, Join operation, Label Computation comparison for registration
system-2 (example a)

Example B:
(course 'No 211 !G1 4!G21) (course INo 212!GI1 4 !G2 1) (register 211)(register

212) (vetract 211)(retract 212)(register 211)(register 212)

Time(sec) Join Label
computation
Morgue system 68 1054 1168
Hindi system 41 399 880

Table 16 : Time, Join operation, Label Computation comparison for registration
system-1 (example b)

Time(sec) Join Label
computation
Morgue system 547 1054 1168
Hindi system 51 599 880

Table 17 : Tlme, Join operation, Label Computation comparison for registration
system-2 (example b)

In the next chapter, generalized conclusions, final remarks, and suggestion for

future work, will be presented.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Chapter S

Conclusions

In this chapter, we present our conclusions derived from all the three systems, as well as

some suggested future work.

5.1 Conclusions
1. We had shown that the Tight coupling approaches are more efficient than the loose
coupling approach, using four different applications. This is because tight coubling
approaches use the label of the tuple during reasoning to determine weather we use
the tuple in the next join operation or not. This leads to a reduction in the number of
tuples in the memories and so reduces the time needed for the join operations.
Moreover, the computation of labels in tight coupling approaches is much easter,
since we compute the label using two antecedent only each time. Moreover this
computation is shared between rules because of the nature of the Rete network. The
loose coupling approach, on the other hand, hasto compute the label using all the
antecedents of the rule, and no work sharing can be gained, since the label
computations are done outside the Rete. |
2. For application that may need to rejoin tuples, Hindi system saves a lot of time,
because it performs less join operations, and less label computations. Moreover it
becomes much more efficient than the Morgue system when there is hard match inter-

test that involves two tuples or more. (e.g. complex equation)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

95

3. When there is no rejoin operation, Hindi system can at worse perform as good as
the Morgue .system, but in many cases it requifes more memory, since it does not
eliminate nodes with empty label, but, instead it keeps them in the OUT part of
| memory nodes.

4. In case of a large space problem or high order combinatorial problem, even if there
is no rejoin operati;)n (e.g. queen problem), Hindi system saves some time, and this is
because the “delete” operation used by the Morgue system takes more time to
execute than changing the flag operation used by Hindi system.

5. The Morgue system, have discarded a main advantage of the ATMS which is the
ability to explain how it reached its conclusions. The ATMS will then traverse it’s
dependency network and return all the assumptions that supports its conclusion.
Because the Morgue system delete all tuples with empty label we can't ask it to trace
its dependency network to explain how something become nogood. On the other

hand, Hindi system doesn’t delete any tuple, and s6 it can answer the Why? queries.

4

5.2 Suggested Future Work

1. We can improve the efficiency of the loose coupling approach itself by making
some modifications on the way it deals with contradictions. In the loose codpling
approach all instantiated contradiction rules are fired first; that can help in preventing
some instantiated rule from firing which saves some time. However, all tuples with
empty labels will still be stored in Rete memory nodes and used in the join operations
which is unnecessary. The modification we suggest here is to move all the tuples with
empty label to the out part of the corresponding memory node whenever a
contradiction rule is fired. This will decrease the number of join operations performed

and saves some work. Although, this modification can improve the efficiency of the

loose coupling approach, but we expect it will not become more efficient than the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

96

tight coupling approaches. The is because the tight coupling approaches uses the
label during the match process to decide weather or not to match the node any further
or not; This will reduce execution time of the matching step.

2. We suggést redesigning the reaéoning algorithm so that it stores the tuple with
empty labels in the QUT part only when there is enough memory space available,
otherwise it must delete the empty label tuples i.e. return to Morgue system when
there is no space available.

3. Redesign the rules, so we can determine which rules are more dynamic and can be
treated according to the Hindi system, while for the other less dynamic rules use the
basic Morgue system.

4. The Morgue and Hindi system, merges the Rete with the ATMS, which complicate
the implementation. To simplify the implementation, I suggest implementing the
ATMS and the Rete network as separate modules that can communicate via message

passing.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

97

Refcrences

Bodington, R. and Ellaby E.1988. Justification And Assumption Based Truth
Maintenance Systems: When And How To Use Them For Constraint Satisfaction ./#

Reason Maintenance Systems and Their Applications. Ellis Horwood limited.
de Kleer, J. 1986. An Assumption-based TMS. 4riificial Intelligence, 22(2):178-196.
de Kleer, J. 1986. Extending the ATMS. Artificial Intelligence, 22(2). 193-197.

de Kleer, J. 1986. Problem Solving With The ATMS. 4drtificial Intelligence, 22 (2}

:197-224.

Dresslar, O. 1988. An extended basic ATMS. Proceeding of the second international

workshop on Non-monotonic Reasoning: 143-163.

Forbus, K.D. and de Keer, J. 1993. Building Problem Solvers, Ist.edition A Bradford

book, England.

Forgy c. 1982. A Fast Algorithm For the Many Pattern/Many Object Pattern Match

Problem. Artificial Intelligence,19:17-37,

Hindi, K. 1994. Integrating Truth Maintenance Systems with Active Daiabase Systems
for Next Generation Cooperative Systems. Ph.D. thesis, Department of computer

Science, University of Exeter.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

98

Hindi, K. and Lings, B. 1994, Using Truth Maintenance Systems To Solve The Data
Consistency Problem . In Proceeding of the second International Conference on

Cooperative Information Systems: CooplS-94,Universiy of Toronto Press.

McAllester, D. 1980. An Qutlook On Truth Maintenance. Technical Report AIM-551,

Al Laboratory, Massachusetts Institute of Technology.

Morgue, G. and Chehire, T. 1991, Efficiency of production systems when coupled with
an assumption based truth maintenance system. In Proceedings of the Ninth national

Conference on artificial Intelligence, AAAI268-274.

Ohta, Y. and Inoue, K. 1990. A Forward-Chaining Multiple-Context Reasoner And Its
Application To Logic Design. In [EEE second International Conference on Tools for

Artificial Intelligence. pages 386-392.

Quine, W.V. and J.S. Ullian. 1978. The web of Belief. NewYork: Random House.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Appendix 1

Rete Program

1.1 Rete.lsp
;;; RETE Production System = REPS
(IN-PACKAGE :RETE)

(LOAD "DEF.LSP"} ;Structure definition
(LOAD "BUILD.Isp")} ;Build RETE network
(LOAD "REASON.Isp") ;Reasoning system
(Defvar RULE-FILE) ;Rule-file
(Setf rule-file "q.Isp")

(Defvar Problem "Queen") ;Problem name
;;; Measurement variabie
(defvar joperation) ;;; Join operation

(defvar erule) ;;» Execute normal rule
(defvar ecrule) »»; Execute Contradiction Rule
(defvar Icomp) ;;; Label Computation

(defvar instrule) ;;» The no. of rule instantiation
;;; Inttialization .
(setf joperation 0) (setf erule 0) (setf ecrule 0) (setf lcomp 0) (setf instrule 0)
;> Start function
{(defun start)
(g¢) -
(in-reps (create-reps problem))
(load RULE-FILE)
(setf rule-file nif)
(start-reasoning))

(defun in-reps (ps) (setq *reps* ps))
(defun in-rete (rt) (setq *rete* rt))

;;;Create Function :REPS | Datum
(defun create-reps (title)
(setq ps (make-reps
:TITLE title
‘RETE (in-rete (make-rete :title (list :RETE-OF title}))))

ps)

»» Input :(1 (fact)) -- this is a tuple? (not a compound tuple)
5 Output :Datum -

;;; not exist previously .

(defun create-datum (wme)

(make-datum :fact (list wme)))

.. Create *rule* and set new data

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

100

(defun set-rule (name lhs test rhs vars flds)
(setq *rule*
(make-Rule
:name name lhs lhs
:ths rhs :test test
:vars vars :flds flds)))

;e Macros
(defmacro initial-working-memory (&rest wmes)
‘(set-queue ', wmes))

(defmacro rule (name ant &rest body)
*(decompose-rule ',name ',ant ’body nil))

(defmacro Contradiction-rule (name ant &rest body)
‘(decompose-rule ',name ',ant ' body t))

(defmacro rassert! (fact)
“(assert! ,(quotize fact)))

;;; Decompose rule into its component and store that in *Rule*
(defun decompose-rule (name Lhs body contradiction &aux rhs test vars)
{setf RHS (extract-rhs body))
(when {eq (first body) :test) (setf test (second body)))
(setf vars (extract-vars Lhs))
(setf flds (reverse{extract-flds Lhs)))
(set-rule name ths test rhs vars flds) (create-rete))

;;; Extract the right hand side of the rule
{defun extract-rhs (body) (setf! (rest(member "==> body))))

;. Extract a list of variables
(defun extract-vars (Lhs &aux (var-list nil))
(cond ((variable? Ihs) (list lhs))
((atom Ihs) nil)
(t (append (extract-vars (first lhs)) (extract-vars (rest lhs)N

;;; Extract a list of fields
e Input : list of predicates
;»; without remove duplicate
(defun extract-flds (Lhs)
(tet {(1d-hist nil}))

(dolist (pattern lhs)

(when (listp pattern)

(dolist (item pattern)
(when (field? item) (setf fld-list (cons item fld-list)))})}
fld-list}))

;;; Take a list of initial working memory element

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

101

;»; Create a datum for each,Store it in queue
(defun set-queue (wmes)
(dohst (wme wmes)
(push (create-datum (cons 'l (list wme))) (reps-queue *reps*))))

;;» Is x a variable 7¢ ?
(defun variable? (x)
{and (symbolp x) (char=#\7? (elt (symbol-name x) 0))))

;o Is x a field le ?
(defun field? (x)
(and (symbolp x) (char=#! (elt (symbol-name x) 0))))

;:Data Retreieve
;»; Fetch a pattern
;5; Show all assertions
;;; Note : this may print duplicate data becuase the tuple may stored
;;» - in more than one alpha-mem
{defun show-data ()
;;» Look in alpha assosiated with type-checking, t-const
;;; Which contain only a single tuple
(format t "~%Working Memory :-"}
(dolist (alpha (reps-alpha *reps*))
(dolist (datum (alpha-beta-datums alpha))
(format t "~% => ~a" (second (first{datum-fact datum)}))))
;;; Look in derived attribute which contaain all tuple that have not alpha
(dolist (datum (reps-derived *reps*))
{format t "~% ==> ~a" (second (first(datum-fact datum)))}))

5y Input (1 (pat-name fld]1 7d #1d2 3....))
;;» Output list of instantiated pattern
{defun fetch (pattern &aux (result mil))
;»; look if there is an alpha correspond to predicate name
(dolist (alpha (reps-alpha *reps*))
(when (eq (first (second pattern))
(get-pred-name (first(alpha-beta-datums alpha))))
{(dolist (datum (alpha-beta-datums alpha))
(setf bindings (match (second pattern)
(second (first(datum-fact datum)))))
(unless (eq bindings 'fail)
(push (sublis bindings (second pattern)) resuit)))))
(dolist (datum (reps-derived *reps*})
(setf bindings (match (second pattern)
(second (first{datum-fact datum)))))
{unless (eq bindings 'fail)
(push (sublis bindings (second pattern)) result)))
(remove-duplicates result :test 'equal))

»»» Input (1 (pat-name fld1 ?7d fld2 3....))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

102

.»» Qutput :datum if it exist or nil else
(defun is-exist? (pattern &aux (result nil))
;:; look if there is an alpha correspond to predicate name
(dolist (alpha (reps-alpha *reps*))
(when (eq (first (second pattern))
(get-pred-name (first(alpha-beta-datums alpha))))
(dolist (datum (alpha-beta-datums alpha))
(setf bindings (match (second pattern)
(second (first{datum-fact datum)))))
(unless (eq bindings 'fail)
(return-from is-exist? datumy}))))
. look in derived datums
(dolist (datum (reps-derived *reps*))
(setf bindings (match (second pattern)
(second (first{datum-fact datum)))))
(uniess (eq bindings 'fail)
(return-from is-exist? datum))) mi)

., Input : (pat-name 1ftd1 7d 1ld2 3....)

;;» Output : list of instantiated pattern

(defmacro Rfetch (pattern)

“(fetch (cons '1 (list ' pattern))))

., Input : datum

;;; output : a predicate name

(defun get-pred-name (wme)

(when wme
(first(second(first(datum-fact wme))))))

WMATCH PART
;;; MATCH A PATTERN WITH AN ASSERTION
;.»; RETURN THE BINDING IF IT EXIST ELSE FAIL
(defun match (a b &optional (bindings nil})
{cond ({equal a b) bindings)
({variable? a) (match-variable a b bindings})
((or (not (listp a)) (not (listp b))) 'FAIL)

((not (eq 'FAIL (setq bindings (match (first a) (first b) bindings))))

(match (cdr &) (cdr b) bindings))
(t 'FAIL)))

(defun match-variable (var exp bindings &aux binding)
(setq binding (assoc var bindings))
(cond (binding
~ (match (cdr binding) exp bindings))
(t (cons (cons var exp) bindings))))

(time(start))
{dotimes (r 10)
(format t "~a" (code-char 7)))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

103

1.2 Defllsp

: Queen Problem Using RETE Production System REPS

:;: Declaration Part

.. 1- SPECIAL VARIABLES .

2- STRUCTURE USED .

;. 3- PRINT FUNCTION .

(IN«PACKAGE :RETE)

..; RETE Production System

(defvar *REPS* nil "Queen Problem-RETE")

(defvar *rule*) (defvar *RETE* nil "Queen Problem-RETE")
(defstruct (reps (PREDICATE reps?) (:PRINT-FUNCTION print-reps))

’B’

L

(title nil)

(atms nil) ;Assumption beased truth maintenance system
(rete nil) ‘RETE network

(alpha nil} :Memory-node where all datum are stored there
(derived nil) :Datums that have no a]pha are stored here
(conflict-set nil) ;Conflict-set (instantiated rules)

(queue nil)) :Queue used conflict Resolution.

(defun print-reps (reps st ignore)
(format st "REPS:~A" (reps-title reps)))

(defun show-reps ()

(format t "~%Title:~a" (reps-title *reps™*))
(format t "~%Atms:~a" (reps-atms *reps*))
(format t "~%RETE:~a" (reps-rete *reps*))
(format t "~%QUEUE:~a" (reps-queue *reps*))

(format t "~%To show All Data Echo (show-Data)")
(format t "~%To show Conflict-set Echo (show-conflict-set)"))

;;; INSTANCE STRUCTURE

;»; Print Functions

;; SHOW CONFLICT SET.

(defstruct (instance ((PREDICATE instance?)

(:PRINT-FUNCTION print- mstance))

(rule-name nil)
(consequence nil) ;;un-instantiated consequence
(vars nif) ;:variable in consequence
(binding nil)) ;;assosiation list with variable binding

(defun print-instance (inst st ignore)
(format st “~%Instance:-") .
(format st "~%Rule:~a" (instance-rule-name inst))
(format st "~%Consequence:~a" (instance-consequence inst))
(format st "~%Vars:~a" (instance-vars inst))
(format st "~%Binding:~a" (instance-binding inst)))

(defun show-conflict-set (&optional (conflict-set (reps-conflict-set *reps*)))
(dolist (instance conflict-set) (print-instance instance t nil)))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

104

i DATUM STRUCTURE <Fact>
;53 PRINT FUNCTIONS
(defstruct (datum (PREDICATE datum?)
(:PRINT-FUNCTION print-datum))
(fact nil) -
(node nil)
(assumption? nil))

(defun print-datum (datum st ignore)
(format st "Datum:~a" (datum-fact datum)))

{(defun show-datums (datums)
(dolist (datum datums)

(format t "~%Datum ~A: ~%Node:~A ~%Assumption: ~A "
(datum-fact datum)
(datum-node datum)
(datum-assumption? datum))))

., Temprory structure used in rete builder
(defstruct (Rule) ;temp rule
(name nil) (lhs nil) (test ml)

(rhs nil) (flds Inil) (vars nil))

;. RETE NETWORK
., Print Functions
(defstruct (RETE ((PREDICATE rete?)
(:PRINT-FUNCTION print-rete)} ;;; ROOT NODE
(title 'Rete-nets)

(type-checking nil)) . Nodes to Check the predicate name

(defun print-rete (rete st ignore)
(format st "RETE:~A" (rete-title rete)))

(defun show-rete ()
(format t "~%Title:~a" (rete-title *rete*))
(format t "~%Type checking Nodes:~a" (rete-type-checking *rete*)))

;»»Type Checking Nodes
(defstruct (Tcheck-node ((PREDICATE tcheck-node?)
(:PRINT-FUNCTION print-Tcheck-node))
(name nil) :; Name of the predicate
(next-nodes nil)) ;; alpha-beta or t-const - list of nodes

(defun print-Tcheck-node (Tcheck-node st ignore)
(format st "TCHECK:~A" (Tcheck-node-name Tcheck-node)))

(defun show-Tcheck-node (&optional (Tchecks (rete-type-checking *rete*)))
(dolist (Tcheck Tchecks)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

105

(format t "~%Name:~a" (Tcheck-node-name Tcheck))
(format t "~%Next Nodes:~a" (Tcheck-node-next-nodes Tcheck))))

ra

.;; T-const nodes
(defstruct (T-const-node (PREDICATE t-const-node?)
(:PRINT-FUNCTION print-T-const-node))
(id 0} ;; indexer :
(checkl nil) ;» check the constant value ((field value)...)
{check2 nil) ;; check the field in one predicate ((field field)...)
(check3 nil) ;; intra-test-function name

(next-node nil)} ;; alpha-beta -one node

(defun print-T-const-node (t-const-node st ignore)
(format st "TC:~a" (t-const-node-id t-const-node)) .
(if (t-const-node-checkl t-const-node) (format st " Const-test,"))
(if (t-const-node-check2 t-const-node) (format st " Equal-var,”))
(if (t-const-node-check3 t-const-node) (format st " Intra-Ext-fun,")))

(defun show-t-const-node (t-const-list)
(dolist (t-const t-const-list)
{(format t "~%Id:~a" (t-const-node-id t-const))
(format t "~%Const-iest;~a" (t-const-node-checkl t-const))
(format t "~%Equal-var:~a" (t-const-node-check2 t-const))
(format t "~%lntra-Ext-fun:~a" (t-const-node-check3 t-const})
(format t "~%Next-node:~a" (t-const-node-next-node t-const))})

..; Alph and beta memory nodes
(defstruct (alpha-beta (PREDICATE alpha-beta?)
(:PRINT-FUNCTION print-alpha-beta))
(id 0) ;; indexer
(Datums nil}) ; List of facts
(R-Ands nil) ; Right and node -list
(L-Ands nil) ; Left and node -list
(p-mem nil) = ; P-mem node if it the next -list
(prev-node nil)); pointer to the previous node -one ¢lement

(defun print-alpha-beta (alpha-beta st ignore)
(format st "Alpha-beta:~A" (alpha-beta-id alpha-beta)))

(defun show-alpha-beta (mem-list)
(dolist (mem mem-list)
(format t "~%Id:~a" (alpha-beta-id mem))
(format t "~%Datums:~a" {(alpha-beta-datums mem))
(format t "~%No of datums :~a" (length (alpha-beta-datums mem)))
(format t "~%R-Ands:~a" (alpha-beta-R-ands mem})
(format t "~%L-Ands:~a" (alpha-beta-L-ands mem))
(format t "~%P-mems:~a" (alpha-beta-p-mem mem))
(format t "~%Prev-node :~a" (alpha-beta-prev-node mem))))

mm

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

106

... AND nodes -
(defstruct (AND-node ((PREDICATE and-node?)
{:PRINT-FUNCTION print-and-node))
(id 0) ;; Indexer
(checkl nil} ;; check the var between predicates ((fld2 ind fld2 ind)..)
(L-memnil) ;; Left Memory Nodes -one element
(R-mem nil) ;; Right Memory Nodes -one element
(O-memnil)) ;; Ouiput Memory Nodes -one element

(defun print-and-node (and-node st ignore)
(format st "And:~A" (and-node-id and-node)))

(defun show-and-node (and-list)
(dolist (and-node and-list)
(format t "~%Ild:~a" (and-node-id and-node))
(format t "~%Eq-var:~a" (and-node-check1 and-node))
(format t "~%Left mem :~a" (and-node-L-mem and-node))
(format t "~%Right mem :~a" (and-node-R-mem and-node))
(format t "~%0Output mem :~a" (and-node-O-mem and-node))))

;»; P-memory nodes

(defstruct (P-mem (:PREDICATE p-mem?) (:PRINT-FUNCTION print-p-mem))

(rule-name nil) ; the name of the rule corresponding to it
(inter-test nil) ; the name of the inter test function
(consequent nil) ; the consequent of the tule (un-instantiated)
(var-loc ml}} ; ((7x fid index)...)

(defun print-p-mem (p-mem st ignore)
(format st "P-mem :~A" (p-mem-rule-name p-mem)))

(defun show-p-mem (p-mem-list)
{(dolist (p-mem p-mem-list)
(format t "~%Rule Name :~a" (p-mem-rule-name p-mem))
(format t "~%Test Name :~a" (p-mem-inter-test p-mem))
(format t "~%Consequent:~a" (p-mem-consequent p-mem))
(format t "~%Var-loc ;~a" (p-mem-var-loc p-mem))))

1.3 Build.lsp

.., Create the rete network for a set of rules

;> It will be more iffecient if you write the rules according to the

. Followmg condition:

5, 1- put the commom predicate in the right hand side of the rule

o and in the same order over the rules

5 2- put the more changable predicate at the left hand side of the rule
s, 3- any condition you need over any predicate use :test function-name
5, 4-you can use :test function for the whole set of predicate

5 5-if you use the predicate in different place

5 use the same arrangment of field name

., General syntax of a rule is :

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

107

;5 (rule r-name ((antl)[:test #function-name]
(ant2)[:test #function-name]}

13y

s vrwrwrs)
" [:test #function-name] =
3 (rassert! (consequent)))

;;; General syntax of fact
5 (predicate-name ifield-name fi eld-value ...)
... if the field value is variable use 7varname.
: To Enter initial working memory element :
. (initial-working-memory (father !fl ahmad f2 sami) (..} ...)
- Intra-test: use all fields-value in a predicate under examine
as an input to the function -
with duplicate - (do not remove duplicate)
and in order as they are appear in the predicte
- Inter-test: use all field values in all rule under examine
as an input to the function with the same order as
they appear in the rules predicate - with duplicate
.- Rassert! ,Rassert-nogood! insert data
(m-package ‘RETE)
; Special variable decleration

I’!
¥y
”’
337
39
;;;
an
35

LR34

”!

(defvar *dir* 'r) ; special variable to determine the direction of build rete net

(defvar *r-env* nil) - place to hold the binding from rijht
(defvar *l-env* nil) ; place to hold the binding from left
(defvar *mem-id* 0) ; Counter for alpha-node

(defvar *con-id* 0) ; Counter for t-const-node

(defvar *and-id* 0) ; Counter for and-node

(setf *con-id* O)(setf *and-id* 0)(setf *mem-id* 0)

. Variable Needed for debug and tree traverse

(defvar *tc* nil)(setf *tc* nil)(defvar *tch* nil)(setf *tch* nil)
(defvar *al* nil)(setf *al* nil)(defvar *ad* nil)(setf *ad* nil)
(defvar *p* nil)(setf *p* mif)

.., Main function

.05 *rule*-test is a test over all predicate

{(defun create-rete ()

(setf *r-env* nil)(setf *l-env* nil)(setf *dir* ')
(create-p-mem (process-antecedents (decompose-ants))))

., Decompose each antecedent into a antecedent and a test

5y Input: ((pl .):test #f (p2)
> Output: (((p1 ..) #1) ((p2 ..) nil))
(defun decompose-ants (&optional (Ihs (rule-ths *rule*)) &aux nths)
(do ((ants lhs (rest ants))
{nlhs nil))
((endp ants) (reverse nlhs))
(cond ((and (listp (first ants)) (eq (second ants) :test))
(push (list (first ants) (third ants)) nlhs) ~
(setf ants (rest{rest ants))))
(t (push (list (first ants) nil) nlhs)))))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

108

;;» Main function in build a rete for each rule
> Input : (((p1 ..) #1) ((p2 ..) nil)) .
;5 Output: alpha-beta Memory Node .
(defun process-antecedents (lhs)
(cond ((endp lhs) nil)
(t (anded (process-antecedents (rest lhs))
(process (first [hs))))))
., Process one antecedent and create type-checking ,t-const node,alpha-beta
5 Input :((p1 ..) #1)
;»; Output: alpha-beta Memory Node .
(defun process (ant)
(update]-l-r-env ant) ;; update r-env,l-env
(setf checkl (compute-check] ant)) ;; constant check
(setf check2 (compute-check? ant)} ;; var equality
(setf check3 (second ant)) ;; function name
;:If there is a test create t-const else create type-check-node only
(if (or check1 check2 check3)
(alpha (t-const check] check2 check3 (type-check ant)))
(alpha (type-check ant))))

.,» Update the r-env ,i-env according to the new pattern
»» Input :((p1 ..) #f) ,*dir*
;. Output ((fld1 var index) ...}
“(defun updatel-l-r-env (ant)
(cond {(eq *dir* 'r) (setf *dir* 1) (setf *r-env* (generate-env ant)))
((eq *dir* 1) (setf *l-env* (generate-env ant)))))

»» Input ((pl ..) #1)

55, Output :((fld1 1 varl) ...)

(defun generate-env (ant &aux (env nil))

(do ((ant1 (first ant) (rest ant1))
(env nil))
({endp antl) (reverse env))
(when (and (field? (first ant1)) (variable? (second ant1)))
(push "(,(first ant1) 1 ,{(second ant1) } env))))

;;; Check the constant field in a predicate
i Input ((p1 ..) #f)
5, Output :((fld val)...)
(defun compute-check] {(ant &aux (env nil))
(do ((ant1 (first ant) (rest ant1))
(env nil))
((endp ant1) (reverse env))
(when (and (field? (first ant1))} (not (variable? (second ant1)}))
* (push '(,(first ant1) ,(second ant1)) env))))

.5, Check if two or more variable are equal
»» Input :((p1 ..} #1)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

109

;;; Output :(fld1 fld2)
(defun compute-check2 (ant &aux (env nil))
(do ((ant1 (first ant) (rest antl))
(env ml))
((endp ant1) (reverse env))
(when (field? (first ant1))
(setf fld (first antl})
(setf var (second ant1))
(do ((rem (rest(rest ant1)) (rest rem)))
{(endp rem))
(when (and (field? (first rem)) (eq (second rem) var})
(push '(,fld ,(first rem)) env)

(return t))))))

- Create type checking node , If it exist return it

s Input :((p1 ..) #1)
;;; Output :Type Checking node
{(defun type-check (ant)
(setf tch (lookfor-tch ant}))
(if tch tch (create-type-checking ant)))

;. Create alpha-mem node and assosiate it with the node
:; Input : type-checking node or t-const or and node
;;; Output : Alpha-beta memory-node
(defin alpha (node)
(cond
((tcheck-node? node)
;; If it exist return it else create a new one
(lookfor-alpha-beta node})
{(and (t-const-node? node)
(alpha-beta? (t-const-node-next-node node}))
(t-const-node-next-node node))
((t-const-node? node)
(setf *mem-id* (1+ *mem-id*))
(setf (t-const-node-next-node node)
(make-alpha-beta :id *mem-id* :prev-node node))
(push (t-const-node-next-node node) (reps-alpha *reps*))
(t-const-node-next-node node))
((and (and-node? node) (and-node-o-mem node}))
(and-node-o-mem node))
((and-node? node)
(setf *mem-id* (1+ *mem-id*))
(setf (and-node-o-mem node)
(make-alpha-beta :id *mem-id* :prev-node node))
(and-node-o-mem node) }));

.- look if one of the node is a mem node ;; assosiated with type-checking

(defun lookfor-alpha-beta (tcheck-node)
(dolist (node (tcheck-node-next-nodes tcheck-node))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

110

(when (alpha-beta? node)
(return-from lookfor-alpha-beta node)))
(create—alpha_-beta tcheck-node))

;;; create memory node
¢ join it to the previous node _
(defun create-alpha-beta (tcheck-node)
(setf *mem-id* (1+ *mem-id*)}
(setf ab (make-alpha-beta :id *mem-id* :prev-node tcheck-node))
(push ab (tcheck-node-next-nodes tcheck-node))
(push ab (reps-alpha *reps*)) ab)

- Look if a type-checking node for the ant exist previosly
(defun lookfor-tch (ant)
(setf p-name (first(first ant}))
(dolist (tch (rete-type-checking *rete*))
(when (eq p-name (tcheck-node-name tch))
(return-from lookfor-tch tch) }))

.- Create a structure and return it

bER]

;;; and join it to the root
(defun create-type-checking (ant)
. (setf tc (make-tcheck-node :name (first(first ant)))})

(push tc (rete-type-checking *rete*)) tc)

- if there exist t-const return it else create a t-const node

(defun t-const (checkl check2 check3 tcheck-node)
(setf t-const-node (lookfor-t-const check] check2 check3 tcheck-node))
(if t-const-node

t-const-node - to make closure around the function

(eval *(create-t-const ',check] ‘,check2 ,check3 ' tcheck-node))))

- Look if a t-const node for the type-checking node. is exist previosly

;. must have the same condition
(defun lookfor-t-const {ck1 ck2 ck3 tcheck-node)
(dolist (node (tcheck-node-next-nodes tcheck-node))
(when (and (t-const-node? node)
(t-const-equal? node ck1 ck2 ck3))

(return-from lookfor-t-const node))))

::: create t-const node structure and return it
:»; join it to the previous type-checking node
(defun create-t-const (ck1 ck2 ck3 tcheck-node)
(setf *con-id* (1+ *con-id*))
(setf tc (make-t-const-node
id *con-id*
:checkl ckl
:check2 ck2
.check3 ck3))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

m

(push tc (tcheck-node-next-nodes tcheck-node)) tc)

:-» check if the tests are in this t-const-node or not

(defun t-const-equal? (node ck1 ck2 ck3)

(and
(equal (t-const-node-check3 node) ck3)
(equal-ck (t-const-node-check2 node) ck2)
(equal-ck (t-const-node-checkl node) ck1)})

(defun equal-ck (ckl ck2) '
(unless (= (length ck1) (length ck2)) (return-from equal-ck nil))
(dolist (item ck1)
(unless (member item ck2 :test #'equal) (return-from equal-ck nil))} t)

.- Main function to join between antecedents

: Create and-node , p memory node

;;; Input :two alpha-beta nodes

;»; OQutput :one alpha-beta

(defun anded (r-mem [-mem)
(if (null r-mem) (return-from anded 1-mem))
(setf inter-test (update2-l-r-env)) ;; update r-env,l-env,dir,compute inter-test
(setf Out-mem-and-node (lookfor-and-node inter-test |-mem r-mem))
(if Out-mem-and-node

Out-mem-and-node

(alpha(create-and-node inter-test [-mem r-mem))))

’!’

. Input *r-env* *l-env* *dir*
Output :*r-env* after put l-env at the begining of the r-env
and increment the index of the old *r-env*
- and refurn the inter-test
(defun update2-l-r-env (&aux (nrenv nil))
(dolist (renv *r-env*)
(push "(,(first renv) ,(1+ (second renv)) ,(third renv})) nrenv))
(setf nrenv (reverse nrenv))
(setf inter-test (compute-inter-test *l-env* nrenv))
(dolist (lenv *l-env*) (push lenv nrenv))
(setf *r-env* nrenv) {setf *l-env* nil)
inter-test)

’”

iy

;..Compute the inter test between the right and the left env
;.lnput ; R-env L-env
nOutput : Test
(defun compute-inter-test (l-env r-env &aux (test nil))
(dolist (L I-env)
(setf lvar (third L))
{(dolist (R r-env)
(setf rvar (third R))
(when (eq lvar rvar)
(push "((first) ,(second I) (first R} ,(second R)) test)))) test)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

1

112

.- create and-node and join it to the mem-nodes
(defun create-and-node (test 1)
(setf *and-id* (1+ *and-id*))
(setf and-node (make-and-node
id *and-id*
.check] test
:l-mem 1
T-mem r))
(push and-node (alpha-beta-r-ands r))
(push and-node (alpha-beta-l-ands I)) and-node)

- look if there exist a previously created and node
.5, if yes return the output mem
(defun lookfor-and-node (test | r)
(dolist (left-and (alpha-beta-l-ands 1))
(when (and (member left-and (alpha-beta-r-ands r) :test #'eq)
(equal-and? left-and test))
(return-from lookfor-and-node (and-node-o-mem lefi-and)))))

)”

(deﬁm equal-and? (anode test)
(unless (= (length test) (length (and-node-checkl anode)))
(return-from equal-and? nil))
(dolist (item (and-node-check] anode))
(unless (member item test :test #'equal) (return-from equal-and? nil))) t)

:: After finish build a rete nets for a rule you need to create a p_mem
 for this rule and assosiate it to the last node
- if there is a test in whole rule you must process this test
;; Input :alpha-beta
., Output ;p-mem
(defun create-p-mem (node &optional (mter test-fun (rule-test *rule*)))
(eval *(setf p (make-p-mem
:rule-name ',(rule-name *rule*)
:inter-test ,inter-test-fun
:consequent ' (rule-rhs *rule*)
wvar-loc ', (compute-var-oc))))
(push p (alpha-beta-p-mem node)) p)

’n
”!

!!’

.- find the var loc using the *r-env* and vars in *rule*
;;; Output : ((7x fld index)....)
(defun compute-var-loc (&aux (loc nil))
(dolist (var (rule-vars *rule*)}
(dolist (binding *r-env*)
(when (eq (third binding) var)
(push *(,var ,(first binding) ,(second binding)) loc)
(return t))))
loc)
1.4 Reason.lsp

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

113

(in-package :rete)

;;; Rete Reasoning System .

(defun start-reasoning (&aux (repeat t))

(loop

(unless repeat

(format i "N%***")
(format t "~%Reasoning terminated™)
(format t "~%To look for the data use - show-data ")
(format t "~%To look for a specific data use - rfetch {...) ")

(format t "~%Join operation =~a" Joperation)
(format t "~%Rule instantiated =~a" instrule)
(format t "~%Execute Normal Rule =-a" ERule)
(format t "~%Execute Contradiction Rule =~a" ECRule)
(format t "~%L.abel Computation =~a" Lcomp)
(format t Il_..,_%*******************************#*#***************“)
(return))
;;Find all applicable rule and store the instants in the conflict set
(loop

(setf wme (pop (reps-queue *reps*)))
(when (null wme) (return))
(process-wme wine))
(setf repeat nil)
;; loop until a new datum is inserted or no instant in conflict set
(loop
(setf inst (resolve-conflicts))
(when (null inst) (return)) ; Empty conflict-set: finish resolution.
(when (act inst) ;; When the act insert a new datum in queue-process it.
(setf repeat t)

(return)))))

:.» You can put here any creteria you want |
;;; 1 use a simple strategy (the last in first out) ;
(defun resolve-conflicts ()

(pop (reps-conflict-set *reps*)))

. Input :Datum .
.., Insert any completly instantiated rule in conflict set.
(defun process-wme (wme)
;; Find all next-node of the correspond type-check node
(setf tch (find-tcheck (get-pred-name wme)))
(unless tch ;; No type checking for this predicate
(push wme (reps-derived *reps*))
(return-from process-wme t))
(setf next-nodes {tcheck-node-next-nodes tch))
;>Next node :alpha or t-const
(dolist (node next-nodes)
(when (alpha-beta? node)
(push wme (alpha-beta-datums node})
(process-alpha node (list wme)))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

114

{when (t-const-node? node)
(when (and
(process-check] node wme)
(process-check2 node wme)
{process-check3 node wme))
(push wme (alpha-beta-datums (t-const-node-next-node node)))
(process-alpha (t-const-node-next-node node)
(tist wrne))))))
;;; Input : Predicate name
., Output : type checking node
(defun find-tcheck (p-name)
(dolist (tch (rete-type-checking *rete*))
(when (eq p-name (tcheck-node-name tch))
(return-from find-tcheck tch))) nil)

. Input - t-const-node , datum
5 Output @ t, nil
:;» Check the constant values ((fld value)(fld value)...)
::: Datum here is a single tuple.
(defun process-check! (t-const datum)
(dolist (check (t- ~const-node-check1 t-const))
(unless (eq (fld-value (first check) 1 datum) {second check))
(return-from process-checkl nil})) t)

.0 Input : t-const-node , datum

i Output : ¢, nil

.» Check the fields equality ((fld1 fld2)(fld4 1d5)...)

;;; Datum here is a single tuple.

(defun process-check2 (t-const datum)

(dolist (check (t-const-node-check?2 t-const))
(unless (eq (fld-value (first check) 1 datum)
(fid-value (second check) 1 datum))

(return-from process-check2 nil))) t)

., Input : t-const-node , datum
5, OQutput : t, nil
;;; Check the test function ((fld1 fld2)(fld4 fid5)...)
;;; Datum here is a single tuple.
(defun process-check3 (t-const datum)
(unless (t-const-node-check3 t-const)

(return-from process-check3 t))
(setf tuple (second(first{datum-fact datum))})
(setf flds (reverse{extract-flds (list tuple))))
(apply (t-const-node-check3 t-const)

{mapcar #'(lambda (fld)
(fld-value fld 1 datumy))
flds)))

5, Input : The Field r'i-ame, Index ,datum

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

115

;;; Output ; The value of the field; if it exist
(defun fld-value (fid index datum)
(setf tuples (datum-fact datumy))
(dolist {tuple tuples)
(when (= (first tuple) index)
(do ((pattern (second tuple) (rest pattern)))
({null pattern) nil)
{when (eq (first pattern) fld)
(return-from fld-value (second pattern)))))))

;:Input : List of New Datums
.:Process first Left and-node ,then right and-node |
3 finally look for p-mem if it exist.
(defun process-alpha (z/pha new-datums)
{process-l-and alpha new-datums)
(process-t-and alpha new-datums)

(process-p-mem alpha new-datums))

.+, Join the new datums with fact stored in the right mem of the left and
;.» Process the out memory of the and-node
{defun process-l-and (alpha new-datums)
(setf lands (alpha-beta-l-ands alpha))
(dolist (land lands)
.;; the following condition is used to prevent repeat work

b b 3

' when the | and r mem for node AND node is the same and is

323

.;; traversed only in the right direction
(unless (equal {(and-node-r-mem land) (and-node-l-mem land))
(setf new-joind-tuples

. (join new-datums (alpha-beta-datums (and-node-r-mem land})

(and-node-o-mem land) (and-node-check] land)))
(insert-joined-tuple new-joind-tuples (and-node-o-mem land))
(when new-joind-tuples
(process-alpha (and-node-o-mem land} new-joind-tuples))})))

;»; Join the new datums with fact stored in the right mem of the right and

;5; Process the out memory of the and-node
(defun process-r-and (alpha new-datums)
(setf rands (alpha-beta-r-ands alpha))
(dolist (rand rands)
{setf new-joind-tupies
(join (alpha-beta-datums (and-node-l-mem rand)) new-datums
(and-node-o-mem rand) (and-node-check] rand)))
(insert-joined-tuple new-joind-tuples (and-node-o-mem rand))
(when new-joind-tuples
(process-alpha (and-node-o-mem Rand) new-joind-tuples))))

... Check each new datums with inter-fest function (if it exist)
;»» Store the good one in the conflict set
(defun process-p-mem (alpha new-datums)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

116

(unless (alpha-beta-p-mem alpha)
(return-from process-p-mem t))
(setf p-mems (alpha-beta-p-mem alpha))
(dolist (p-mem p-mems)
(dolist (datum new-datums)
(when (process-inter-test p-mem datum)
(update-conflict-set '
(p-mem-rule-name p-mem)
(p-mem-consequent p-mem)
(generate-binding p-mem datum))))))

_ (defun update-conflict-set (mame consequence binding)
(incf instrule)
© (setf lambda-vars (extract-vars consequence))
(eval "(push (make-instance
-rule-name ‘,rname
-consequence #(lambda ,Jambda-vars ,@consequence)
‘binding *,binding
-vars 'Jambda-vars)
(reps-conflict-set *reps*))))

. Input : p-mem , datum
..;» Output : t, nil
.- Check the inter test function if it exist
(defun process-inter-test (p-mem datum})
(unless (p-mem-inter-test p-mem) (return-from process-inter-test t))
(when (p-mem-inter-test p-mem)
(setf vals (extract-vals datum))
(apply (p-mem-inter-test p-mem) vals)))

;s Input ;. Datum
;;; Output : list of variable values
(defun extract-vals (datum &aux (vals nil) (temp nil))
(dolist (tp (reverse(datum-fact datumy)))
(setf temp nil)
(do ({tuple (second tp) (rest tuple)))
((null tuple) t)
(when (field? (first tuple))
(push (second tuple) temp)))
(setf vals (append (reverse temp) vals))) vals)

;;» Input : p-mem node ,datum
:5; Output @ (2x . value)(..)...)
(defun generate-binding (p-mem datum &aux (binding nil))
(dolist (foc (p-mem-var-loc p-memy))
{push {cons (first loc)
(fld-value (second loc) (third loc) datum))
binding)) binding)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

117

;; Input right and left datums | out-mem of the and-node ,test
..» Output : a list of datums (joined tuple test)
(defun join (Idatums rdatums alpha test &aux (result nil})
{dolist (Id Idatums)
(dolist (rd rdatums)

(incf joperation)

(setf updated-r (inc-index rd))

(setf joined-tuple (append (datum-fact Id) updated-r))

(setf d (make-datum :fact joined-tuple))

(when (process-andcheck d test)

(push d result)))) result)

;;; Input ; new-joined tuple
;;; Operation : push them at the datum for the alpha mem
(defun insert-joined-tuple (new-joind-tuples alpha)
{(setf (alpha-beta-datuins alpha)
(append new-joind-tuples (aipha-beta-datums alpha))))

;5 Input :Datums .
;»; Output :fact in the datum after increment index
;;; increment the index in each tuple by one
(defun inc-index (datum &aux (result nil))
(setf facts (datum-fact datum))
(dolist (fact facts) '
(push (list (1+ (first fact)) (second fact)) result)) (reverse result))

;;; Input : joined tuple , test ((fld] index fld2 ind)(...))
;5 Output : t or nil
(defun process-andcheck (d tests)
(dolist (test tests)
(unless
(eq
(fid-value (first test) (second test) d)
{fid-value (third test) (fourth test) d))
(return-from process-andcheck nil))) t)
;;» Input :instance
;;» Output ; t | if it insert a new data
{defun act (inst)
(incf erule)
(apply (instance-consequence inst}
(instantiate-variables (instance-vars inst)
(instance-binding inst))}))

(defun instantiate-variables (consequent binding)
(sublis binding consequent))

;:Input ; fact

;»Insert in the queue if not exist

(defun assert! (fact)
(if (is-exist? (cons 'T (list fact)})

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

118

(return-from assert! nil)
(push (create-datum {cons '1 (list fact))) (reps-queue *reps*))))

:Copyright (c) 1986-1993 Kenneth D. Forbus, Johan de Kleer and Xerox
;Corporation. All Rights Reserved.
(defun quotize (pattern)
(cond ((null pattern) mtl)

((variable? pattern) pattern)

((not (listp pattern)) (list 'QUOTE pattern))

(t ‘(cons ,(quotize (car pattern))

,(quotize (cdr pattern))))))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Appendix 2

Loose Coupling Program

2.1 Rete.lsp

;;; Loose Coupling between RETE Production System with ATMS

(IN-PACKAGE :IRETE)

(LOAD "DEF.LSP") :Structure definition
(LOAD "BUILD.Isp") ;Build RETE network
(Load "ATMS.Isp") ;Atms system

(LOAD "REASON.Isp™) ;Reasoning system

(Defvar RULE-FILE) ;Rule-file
(Defvar Problem "Regist") ;Problem name
(Setf rule-file "crule.lsp")

::: Measurement variable

(defvar joperation) ;;; Join operation

(defvar erule) ., Execute normal operation
(defvar ecrule) ;.. Execute Contradiction Rule
(defvar lcomp) ., Label Computation
(defvar instrule) .»» The no. of rule instantiation

;. Initialization
(setf joperation 0)
(setf erule 0)
(setf ecrule 0)
(setf lcomp 0)
(setf instrule 0)

5o, Start function

(defun start ()
(g¢c)
(in-reps (create-reps problem))
(load RULE-FILE)
(setf rule-file nil)
(start-reasoning))

(defun in-reps (ps) (setq *reps* ps))
(defun in-rete (rt) (setq *rete* rt})) -

..:Create Function :REPS , Datum
(defun create-reps (title)
(setq ps (make-reps
:TITLE title

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

120

:ATMS (create-atms (list : ATMS-OF title))

‘RETE (in-rete (make-rete :title (list :RETE-OF title)})))

(setq false (make-datum :fact ‘(1 '(FALSE))))

(setf {datum-node false) (atms-contra-node *atms*))

(setf (node-datum (datum-node false)) false)
ps)

;i Input (1 (fact)) -- this is a tuple? (not a compound tuple)

:asn ;weather it's assumption or not
0 ‘must not exist previously .

;»; Operation :create datum

3 -create a correspond node

;;; Output Datum

33

(defun create-datum (wme asn)
(setq datum (make-datum
fact (list wme)
:assumption? asn))
. this tuple consist of it self only
(setf (datum-datum-list daturn) (list datum))
(if asn '
(setf {datum-node datum) (assume! datum))
(setf (datum-node datum) (create-node datumy})}
datum)

..o, Input :Datum ,Not exist previously
555, Output :Node
(defun assume! (datum)

(assume-node datum))

;- Create *rule* and set new data
(defun set-rule (name lhs test rhs vars flds cont}
(setq *rule* ‘
(make-Rule
:name name :lhs lhs
ths rhs :test test
-vars vars :flds flds

:contradiction cont)))
;5 Macros

(defmacro initial-working-memory (&rest wmes)
*(set-queue ',wmes))

(defmacro rule (name ant &rest body)
'(decompose-rule ,name ‘ant ',body nil})

(defmacro Contradiction-rule (name ant &rest body)

*(decompose-rule ,name ',ant ',body t))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

121

(defmacro rassert! (fact)
“(assert! ,(quotize fact)))

(defmacro rassert-nogood! ()

"(assert-nogood!))

.. Decompose rule into its component and store that in *Rule*

b24)

(defun decompose-rule (name Lhs body contradiction &aux rhs test vars)

(setf RHS (extract-rhs body))

(when (eq (first body) :test) (setf test (second body)))
(setf vars (extract-vars Lhs))

(setf flds (reverse(extract-flds Lhs)))

(set-rule name lhs test rhs vars fids contradiction)
(create-rete))

... Extract the right hand side of the rule
(defun extract-rhs (body)
(setf1 (rest(member '==> body})}))

;. Bxtract a list of variables

(defun extract-vars (Lhs &aux (var-list nil})
(cond ((variable? ihs) (list lhs)})
((atom 1hs) nil)
{t (append (extract-vars (first lhs))
(extract-vars (rest lhs))))

..; Extract a list of fields
;», Input : list of predicates
,»» without remove duplicate

(defun extract-flds (Lhs)
(let ((fld-list nil))
(dolist (pattern lhs)
(when (listp pattern)
(dolist (item pattern)
(when (field? item) (setf fld-list (cons item fld-list)) })))
fld-list))

:» Take a list of initial working memory element
. Create a datum for each,Store it in queue

(defun set-queue (wm};s)
(dolist (wme wmes)
(push (create-datum (cons 'l (list wme)) t) (reps-queue *reps*))))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

122

;. Is x a vartable 7¢ 7
(defun variable? (x)
(and (symbolp x)
(char=#\? (elt (symbol-name x) 0))))

ar

< Isx afield l¢c ?

(defun field? (x)
(and (symbolp x)
(char=#\! (elt (symbol-name x) 0))))

'Data Retreieve

bR

;;; Fetch a pattern

.; Show all assertions

- Note : this may print duplicate data becuase the tuple may stored
;;; . in more than one alpha-mem

(defun show-data (&optional (show-label nil)) _
;;: Look in alpha assosiated with type-checking t-const

. :;» Which contain only a single tuple
(format t "~%Working Memory :-")
(dolist (alpha (reps-alpha *reps*))
(dolist (datum (alpha-beta-datums alpha)) .
(when (node-label (datum-node datum))
(format t "~% ==> ~a" (second (first(datum-fact datum))))
(when show-label
(format t "~% Label ==> ~a" (node-label (datum-node datum)))))))
- Look in derived attribute which contain all tuple that have not alpha
(dolist (datum (reps-derived *reps*))
(when {node-label (datum-node datum))
(format t "~% ==> ~a" (second (first(datum-fact datum})))
(when show-label
(format t "~% Label => ~a" (node-labe! (datum-node datum))))))}

.; Input :(1 (pat-name !fld1 7d Ifld2 3....})

13

;;; Output :list of instantiated pattern
(defun fetch (pattern show-label &aux (result nil))
.-, look if there is an alpha correspond to predicate name
(dolist (alpha (reps-alpha *reps*)}
(when (eq (first (second pattern))
(get-pred-name (first(alpha-beta-datums alpha))))
(dolist (datum (alpha-beta-datums alpha))
(when (node-label (datum-node datum})
(setf bindings (match (second pattern)
(second (first(datum-fact datumy)))))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

123

(unless (eq bindings 'fail)
(when show-label
(push (node-label (datum-node datum)) result))
(push (sublis bindings (second pattern)) result))})})
(dolist (datum (reps-derived *reps*))
(when (node-label (datum-node datum))
(setf bindings (match (second pattern)
(second (first(datum-fact datum)))))
{unless (eq bindings 'fail}
(when show-label
(push (node-label (datum-node datumy)) result))
(push (sublis bindings (second pattern)) result))))
(remove-duplicates result ;test 'equal))

.»; Input (1 (pat-name !fid1 7d 'fld2 3....))
.;; Output -datum if it exist or nil else

133

"

(defun is-exist? (pattern &aux (result nil))
::: look if there is an alpha correspond to predicate name
(dolist (alpha (reps-alpha *reps*))
(when (eq (first (second pattern))
(get-pred-name (first(alpha-beta-datums aipha))))
(dolist (datum (alpha-beta-datums alpha))
(setf bindings (match (second pattern)
(second (first(datum-fact datum)))}))
(unless {(eq bindings 'fail)
(return-from is-exist? datum)})})
.. look in derived datums
(dolist (datum (reps-derived *reps*))
(setf bindings (match (second pattern)
(second (first(datum-fact datum)))))
(unless {eq bindings 'fail)
(return-from is-exist? datum)))
nil)

5y Input : (pat-name !fld1 7d ld2 3...))
;;; Output : list of instantiated pattern
(defmacro Rfetch (pattern)

“(fetch (cons 'l (list ',pattern)) nil)) k
. Input ; datum

;;; output : a predicate name

(defun get-pred-name {wme)
(when wme
(first(second(first(datum-fact wme)))}))

ghts Reserved - Library of University of Jordan - Center of Thesis Deposit

All Ri

124

i MATCH PART
;, MATCH A PATTERN WITH AN ASSERTION
- RETURN THE BINDING IF IT EXIST ELSE FAIL
(defun match (a b &optional (bindings nil))
(cond ((equal a b) bindings)
((variable? a) (match-variable a b bindings))
((or (not (listp a)) (not (listp b))) 'FAIL)
((not (eq 'FAIL (setq bindings (match (first a) (ficst b) bindings))))
(match (cdr a) (cdr b) bindings))
(t FAIL)))

(defun match-variable (var exp bindings &aux binding)
(setq binding (assoc var bindings))
(cond (binding
(match (cdr binding) exp bindings))
(t (cons (cons vr exp) bindings))))

(time(start))
(dotimes (r 1)
(format t "~a" (code-char 7)))

2.2 Defllsp

;; Queen Problem Using RETE Production System REPS
;»» Declaration Part :
1- SPECIAL VARIABLES .
2- STRUCTURE USED "
3- PRINT FUNCTION .

1
mm

(IN-PACKAGE IRETE)

.;; RETE Production System
(defvar *REPS* nil "Queen Problem-RETE")
(defvar *rule*)

(defvar *RETE* nil "Queen Problem-RETE")

(defstruct (reps (PREDICATE reps?)
(:PRINT-FUNCTION print-reps))

(title nil) :

(atms nil) ;Assumption beased truth inaintenance system
{rete nil) ;RETE network

(alpha nil) ‘Memory-node where all datum are stored there
(derived nil) ‘Datums that have no alpha are stored here

(conflict-set nil) ;Conflict-set (instantiated rules)
(queue nil}) :Queue used conflict Resolution,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

125

(defun print-reps {reps st ignore)
(format st "REPS:~A" (reps-title reps)))

(defun show-reps ()

(format t "~%Title:~a" (reps-title *reps*))
(format t "~%Atms;~a" (reps-atms *reps*))
(format t "~%RETE:~a" (reps-rete *reps*))
(format t "~%QUEUE:~a" (reps-queue *reps*))

(format t "~%To show full atms Echo (print-full-atms)")
(format t "~%To show All Data Echo (show-Data)")
(format t "~%To show Conflict-set Echo (show-conflict-set)"))

;- INSTANCE STRUCTURE

;.. Print Functions
;5 SHOW CONFLICT SET.

(defstruct (instance (PREDICATE instance?)
(‘PRINT-FUNCTION print-instance))
(rule-name nil)
(contradiction nil); weather its contradiction or not.
(consequence nil) ;;un-instantiated consequence

(vars nil) ;;variable in consequence
(antecedents nil) ;;list of antecedents datum
(label nil) ;;label of the antecedents

(binding nil)) ;;assosiation list with variable binding

(defun print-instance (inst st ignore)
{format st "~%lInstance:-")
(format st "~%Rule:~a" (instance-rule-name inst)) -
(format t "~%Contradiction:~a" (instance-contradiction inst))
(format st "~%Consequence:~a" (instance-consequence inst))
(format st "~%Vars:~a" (instance-vars inst)) :
(format st "~%Antecedents:~a" (instance-antecedents inst))
(format st "~%Labels:~a" (instance-label inst))
(format st "~%Binding:~a" (instance-binding inst)))

(defun show-conflict-set {&optional (conflict-set (reps-conflict-set *reps*)))
(dolist (instance conflict-set)
(print-instance instance t nil)})

- DATUM STRUCTURE <Fact>
... PRINT FUNCTIONS

(defstruct (datum (PREDICATE datum?)
(:PRINT-FUNCTION print-datum))
(fact nil)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

126

(datum-list nil) ;; If it's a joind tuple ;this list consist the
;; corresponddatum for each component fact

(node nil) ;; Corresponding Node in the atms

(assumption? nil));; Weather it is an assumption or not

(defun print-datum (datum st ignore)
(format st "Datum:~a" {(datum-fact datumy)))

(defun show-datums (datums)
(dolist (datum datums)

(format t "~%Datum ~A: ~%Node:~A ~%Assumption: ~A "
(datum-fact datum)
(datum-node datum)
(datum-assumption? datum))))

1

.., Temprory structure used in rete builder
(defstruct {(Rule) ;temp rule

{name nil)

(Ihs nil)

(test nil)

(rhs nil)

(flds nil)

(vars nil)

(contradiction nil})

;»RETE NETWORK
::: Print Functions

(defstruct (RETE (:PREDICATE rete?)
(:PRINT-FUNCTION print-rete)) ;;; ROOT NODE
(title 'Rete-nets)
(type-checking nil})) ;; Nodes to Check the predicate name

{defun print-rete (rete st ignore)
(format st "RETE:~A" (rete-title rete)))

(defun show-rete () ;
(format t "~%Title:~a" (rete-title *rete*))

(format t "~%Type checking Nodes:~a" (rete-type-checking *rete*)))

;. Type Checking Nodes
(defstruct (Tcheck-node ((PREDICATE tcheck-node?)
. ((PRINT-FUNCTION print-Tcheck-node))
(name nil) ,, Name of the predicate
(next-nodes nil)) ;; alpha-beta or t-const - list of nodes

(defun print-Tcheck-node (Tcheck-node st ignore)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

127

(format st "TCHECK:~A" (Tcheck-node-name Tcheck-node)))

(defun show-Tcheck-node (&optional (Tchecks (rete-type-checking *rete*)))

(dolist (Tcheck Tchecks)
(format t "~%Name:~a" (Tcheck-node-name Tcheck))
(format t "~%Next Nodes:~a" (Tcheck-node-next-nodes Tcheck))))
;5 T-const nodes
(defstruct (T-const-node (PREDICATE t-const-node?)
(:PRINT-FUNCTION print-T-const-node))
(1d 0) ;; indexer
(checkl nil) :; check the constant value ((field value)...)
{check2 nil) . check the field in one predicate ((field field)...)
(check3 nil) ;; intra-test-function name
(next-node nil}) ;; alpha-beta -one node

(defun print-T-const-node (t-const-node st ignore)
(format st "TC:~a" (t-const-node-id t-const-node))
(if (t-const-node-check] i-const-node) (format st " Const-test,"))
(if (t-const-node-check2 t-const-node) (format st " Equal-var,"))
(if (t-const-node-check3 t-const-node) (format st " Intra-Ext-fun,")))

(defun show-t-const-node (t-const-list)
(dolist (t-const t-const-list)
(format t "~%ld:~a" (t-const-node-id t-const))
(format t "~%Const-test:~a" (t-const-node-checkl t-const))
{format t "~%Equal-var:~a" (t-const-node-check2 t-const))
(format t "~%Intra-Ext-fun:~a" (t-const-node-check3 t-const))
(format t "~%Next-node:~a" (t-const-node-next-node t-const))))
;;; Alph and beta memory nodes
(defstruct (alpha-beta (PREDICATE alpha-beta?)
(:PRINT-FUNCTION print-alpha-beta})
(id 0) ;; indexer '
(Datums nil) . ; List of facts
(R-Ands nil) ; Right and node -list
(L-Ands nil) ; Left and node -list
(p-mem nil) ; P-mem node if it the next -list
(prev-node nil)); pointer to the previous node -one element

(defun print—alphé—beta (alpha-beta st ignore)
(format st "Alpha-beta:~A" (alpha-beta-id alpha-beta)))

(defun show-alpha-be.ta (mem-list)
(dolist (mem mem-list)
(format t "~%Id:~a" (alpha-beta-id mem)).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

128

(format t "~%Datums:~a" (alpha-beta-datums mem))
(format t "~%No of datums :~a" (length (alpha-beta-datums mem)))
(format t "~%R-Ands:~a" (alpha-beta-R-ands mem))
(format t "~%L-Ands:~a" (alpha-beta-L-ands men))

- (format t "~%P-mems:~a" (alpha-beta-p-mem mem))
(format t "~%Prev-node :~a" (alpha-beta-pr ev-node mem))
(format t "~% - ")

(read)))
... AND nodes
(defstruct (AND-node (:PREDICATE and-node?)
(:PRINT-FUNCTION print-and-node))
(d 0) ;; indexer
(checkl nil) ;; check the var between predicates ((fld2 ind ﬂd2 ind)..)
(L-mem nil) ;; LeR Memory Nodes -one element
(R-mem nil) ;; Right Memory Nodes -one element
(O-mem nil)) ;; Output Memory Nodes -one element

{defun print-and-node (and-node st ignore)
(format st "And:~A" (and-node-id and-node)))

(defun show-and-node (and-list)
(dolist (and-node and-list)
(format t "~%Id:~a" (and-node-id and-node))
(format t "~%Eq-var:~a" (and-node-checkl and-node}))
(format t “~%Left mem :~a" (and-node-L-mem and-node))
(format t "~%Right mem :~a" (and-node-R-mem and-node))
(format t "~%Qutput mem :~a" (and-node-O-mem and-node))))

::» P-memory nodes
(defstruct (P-mem ((PREDICATE p-mem?)
(:PRINT-FUNCTION print-p-mem))

(rule-name nil) ; the name of the rule corresponding to it
(inter-test nil) ; the name of the inter test function
(consequent nil) ; the consequent of the tule (un-instantiated)
(contradiction nil), weather its contradiction or not.
(var-loc nil)) ; ((?x fld index)...)

(defun print-p-mem (p-mem st ignore)
(format st "P-mem :~A" (p-mem-rule-name p-mem)))

(defun show-p-mem (p-mem-list)
(dolist (p-mem p-mem-list) :
(format t "~%Rule Name :~a" (p-mem-rule-name p-mem))
(format t "~%Contradiction:~a" (p-mem-contradiction p-mem))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

129

(format t "~%Test Name :~a" (p-mem-inter-iest p-mem))
(format t "~%Consequent:~a" (p-mem-consequent p-mem))
(format t "~%Var-loc :~a" (p-mem-var-loc p-mem))))

2.3 Build.Isp

(in-package IRETE)

;3 Special variable decleration ' .

(defvar *dir* 'r) ; special variable to determine the direction of build rete net
(defvar *r-env* nil) ; place to hold the binding from right
(defvar *l-env* nil) ; place to hold the binding from left
(defvar *mem-id* 0) ; Counter for alpha-node

(defvar *con-id* Q) ; Counter for t-const-node

(defvar *and-id* 0) ; Counter for and-node

(setf *con-id* 0)

(setf *and-id* 0)

(setf *mem-id* 0) -

;5 Variable Needed for debug and tree traverse
(defvar *tc* nil)(setf *tc* nil)

(defvar *tch* nil)(setf *tch* nil)

(defvar *al* nil)(setf *al* nil)

(defvar *ad* nil)(setf *ad* nil)

(defvar *p* nil)(setf *p* nil)

oo o T ok ok ok ok ok ok ok 3k ok ok ofe ok ok ok ok s ok ok e okook

713

;;» Main function

;;; ¥rule*-test is a test over all predicate

eve SRR s O s R s KR o SR o o R R R K
ERR]

(defun create-rete ()
(setf *r-env* nil}(setf *l-env* nil)(setf *dir* 'r)
(create-p-mem (process-antecedents (decompose-ants})))

;;; Decompose each antecedent into a antecedent and a test
5 Input: ((pl .):test #f (p2)
»» Output: (((p1 ..) #£) ((p2 ..) nil))

(defun decompose-ants (&optional (lhs (rule-ths *rule*}) &aux nihs)
{do ((ants lhs (rest ants))
(nths mil))
((endp ants) (reverse nlhs))
(cond ((and (listp (first ants)) {eq (second ants) :test))
(push (list (first ants) (third ants}) nihs)
(setf ants (rest(rest ants))))
(t (push (list {first ants) nil) nlhs))}))

;;» Main function in build a rete for each rule
55 Input - (((p1 ..) #1) ((p2 ..} nil)) .

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

130

.»» Output: alpha-beta Memory Node .
(defun process-antecedents (lhs)
(cond ((endp lhs) nil)
(t {anded (process-antecedents (rest lhs))
(process (first Ihs)))))

::: Process one antecedent and create type-checking ,t-const node,alpha-beta

I3

5 Input :((pl ..) #1)
.;; Output: alpha-beta Memory Node .
(defun process (ant)
(updatel-l-r-env ant) ;; update r-env,l-env
(setf check] (compute-check] ant)) ;; constant check
(setf check2 (compute-check?2 ant)) ;; var equality
(setf check3 (second ant)) ; function name
:-If there is a test create t-const else create type-check-node only
(if (or check1 check?2 check3)
(alpha (t-const check1 check2 check3 (type-check ant}))
(alpha (type-check ant}))) :

;;; Update the r-env ,l-env according to the new pattern
o Input ((pl ..) #1) ,*¥dir* :
:;; Output ((fld1 var index))
(defun updatel-l-r-env {ant)
(cond ((eq *dir* ')
(setf *dir* T)
(setf *r-env* (generate-env ant})))
((eq *dir* 1)
(setf *|-env* (generate-env ant)))))

5 Input :((pl..) #f)
;» Output :((fid1 1 varl) ...)

(defun generate-env (ant &aux (env nil))
{do ((ant1 (first ant) (rest ant1))
(env mil))
{(endp ant1) (reverse env))
(when {(and (field? (first ant1)) (variable? (second ant1)})
(push "(,(first ant1) 1 ,(second antl)) env))))

;» Check the constant field in a predicate

133

2o Input :((pl .) #1)
;5 Output :((fld val)...)

(defun compute-check] (ant &aux (env nil))
(do ((ant] (first ant) (rest antl))
(env nil))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

131

((endp antl) (reverse env))
(when (and (field? (first ant1)) (not (variable? (second ant1))))
(push *(,(first antl) ,(second antl) } env))))

;;; Check if two or more variable are equal

. Input ((pl .) #%)
ios Output :(fld1 f1d2)

(defun compute-check2 (ant &aux (env nil))
(do ((ant1 (first ant) (rest ant1))
(env nil))
((endp ant}) (reverse env))
{when (field? (first ant1})
(setf fld (first ant1))
(setf var (second antl))
(do ((rem (rest(rest ant1)) (rest rem))}
((endp rem))
{when (and (field? (first rem)) (eq (second rem) var))
(push *(,fld ,(first rem)} env)

(return t))))))

:.; Create type checking node , If it exist return it

3713

- Input :((pl ..) #1)
.;; Output :Type Checking node
(defun type-check (ant)

(setf tch (lookfor-tch ant))

(if tch tch (create-type-checking ant)))

-+ Create alpha-mem node and assosiate it with the node
.. Input : type-checking node or t-const or and node
;;; Output : Alpha-beta memory-node

(defun alpha (node})
(cond
((tcheck-node? node)
., if it exist return it else create a new one
(lookfor-alpha-beta node))
((and (t-const-node? node)
(alpha-beta? (t-const-node-next-node node)))
(t-const-node-next-node node))
((t-const-node? node)
(setf *mem-id* (1+ *mem-id™))
(setf (t-const-node-next-node node)
(make-alpha-beta :id *mem-id* :prev-node node))
(push (t-const-node-next-node node) *al*) ;;;==>test
(push (t-const-node-next-node node) (reps-alpha *reps*})
(t-const-node-néxt-node node))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

132

((and (and-node? node) (and-node-o0-mem node))
(and-node-o-mem node)) ;
((and-node? node)
(setf *mem-id* (1+ *mem-id*))
(setf (and-node-o-mem node)
(make-alpha-beta ;id *mem-id* :prev-node node))
(push (and-node-o-mem node) *al*) ;;;==>test
(and-node-o-mem node)

)]

;;; look if one of the node is a mem node ;; assosiated with type-checking
(defun lookfor-alpha-beta (tcheck-node)
(dolist (node (tcheck-node-next-nodes tcheck-node))
(when (alpha-beta? node)
(return-from lookfor-alpha-beta node)))
(create-alpha-beta tcheck-node))

;. create memory node
.;; join it to the previous node

(defun create-alpha-beta (tcheck-node)
. (setf *mem-id* (1+ *mem-id*))
(setf ab (make-alpha-beta :id *mem-id* :prev-node tcheck-node))
(push ab *al*) ;;;test =>
{push ab (tcheck-node-next-nodes tcheck-node))
{push ab (reps-alpha *reps*))
ab)

.., Look if a type-checking node for the ant exist previosly

(defun lookfor-tch (ant)
(setf p-name (first(first ant)))
(dolist (tch (rete-type-checking *rete*))
(when (eq p-name (‘check-node-name tch))
(return-from lookfor-tch tch))))

.,; Create a structure and return it
;;; and join it to the root

(defun create-type-checking (ant)

(setf tc (make-tcheck-node :name (first(first ant))))
(push tc *tch*) ;;;==>

(push tc (rete-type-checking *rete*))

tc)

;.. if there exist t-const return it else create a t-const node
(defun t-const (checkl check2 check3 tcheck-node)
(setf t-const-node (lookfor-t-const check1 check2 check3 tcheck-node))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

133

(if t-const-node
t-const-node
:: to make closure around the function
(eval "(create-t-const ’,check ',check2 ,check3 ',tcheck-node))))

- Look if a t-const node for the type-checking node. is exist previosly

I3y

;; must have the same condition
(defun lookfor-t-const (ck1 ck2 ck3 tcheck-node)
(dolist (node (tcheck-node-next-nodes tcheck-node))
(when (and (t-const-node? node)
(t-const-equal? node ck1 ck2 ck3))
(return-from lookfor-t-const node))))

-+ ereate t-const node structure and return it

¥7

;;; join it to the previous type-checking node

(defun create-t-const (ck1 ck2 ck3 tcheck-node)
(setf *con-id* (1+ *con-id*))
(setf tc (make-t-const-node
id *con-id*
:check] cki
-check2 ck2
-check3 ck3))
(push tc (tcheck-node-next-nodes tcheck-node))
{push tc *tc*) ;;;==>
tc)

.+ check if the tests are in this t-const-node or not
(defun t-const-equal? (node ckl ck2 ck3)

(and

{equal (t-const-node-check3 node) ck3)
(equal-ck (t-const-node-check2 node) ck2)

(equal-ck (t-const-node-checkl node) ck1)))

(defun equal-ck (ckl ck2)
(unless (= (length ck1) (length ck2)) (return-from ecual-ck nil))
(dolist (item ckl)
(unless (member item ck2 :test #'equal) (return-from equal-ck nil}))

t)

;;; Main function to join between antecedents

ERR

::; Create and-node , p memory node

;»; Input :two alpha-beta nodes
::: Qutput :one alpha-beta

(defun anded {r-mem I-mem)
(if (null r-mem) (return-from anded I-mem))

(setf inter-test (update2-1-r-env)) ;; update r-env,l-env,dir,compute inter-test

(setf Out-mem-and-node (lookfor-and-node inter-test I-mem r-mem))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

134

(if Out-mem-and-node
Qut-mem-and-node
(alpha(create-and-node inter-test I-mem r-memy))))

;;; Input :*r-env* *l-env* *dir*

;;; Output :*r-env* after put l-env at the begining of the r-env
and increment the index of the old *r-env*

and return the inter-test

LR

LED

(defun update2--r-env (&aux (nrenv nil))
(dolist (renv *r-env*).
(push "(,(first renv) ,{1+ (second renv)) ,(third renv)) nrenv}))
(setf nrenv (reverse nrenv))
(setf inter-test (compute-inter-test *|l-env* nrenv))
(dolist (lenv *i-env*)
(push lenv nrenv))
(setf *r-env* nrenv)
(setf *l-env* nil)
inter-test)

;;Compute the inter test between the right and the left env

;Input : R-env L-env
4, Output : Test

(defun compute-inter-test (l-env r-env &aux (test nil))
(dohist (L l-env) .
(setf tvar (third L))
(dolist (R r-env)
(setf rvar (third R))
(when (eq lvar rvar)
(push (,(first 1) ,(second 1) ,(first R) ,(second R)) test))))
test)

;. create and-node and join it to the mem-nodes
(defun create-and-node (test 1 r)
(setf *and-id* (1+ *and-id*))
(setf and-node (make-and-node
td *and-id*
:check] test
:l-mem |
T-mem r))
(push and-node *ad*) ;;;==>
(push and-node (alpha-beta-r-ands r))
(push and-node (alpha-beta-l-ands i)}
and-node)

:: look if there exist a previously created and node

313

.1, if yes return the output mem

333

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

135

(defun lookfor-and-nodz (test 1 r)
(dolist (left-and (alpha-beta-l-ands 1))
(when (and (member left-and (alpha-beta-r-ands r) :test #eq)
(equal-and? left-and test))
(return-from lookfor-and-node (and-node-o-mem left-and)))))

(defun equal-and? (anode test)
(unless (= (length test) (fength (and-node-checkl anode)))
(return-from equal-and? nil))
(dolist (item {(and-node-check] anode))
(unless (member item test :test #'equal} (return-from equal-and? nil)})

t)

;» After finish build a rete nets for a rule you need to create a p_mem
- for this rule and assosiate it to the last node
.:; if there is a test in whole rule you must process this test
0 Input :alpha-beta
.. Output :p-mem
(defun create-p-mem (node &optional (inter-test-fun (rule—test *rule*)))
(eval “(setf p (make-p-mem .
-rule-name ',(rule-name *rule*)
-contradiction ,(rule-contradiction *rule*)
‘inter-test ,inter-test-fun
:consequent ’,(rule-rhs *rule*)
var-loc ',(compute-var-loc))))
(push p *p*) ;;;==>
(push p (alpha-beta-p-mem node}))
p)

!”

;;; find the var loc using the *r-env* and vars in *rule*
i Qutput @ ((7x fld index)....)

(defun compute-var-loc (&aux (loc nil))
(dolist (var (rule-vars *rule*))
(dolist (binding *r-env*)
(when (eq (third binding) var)
(push *(,var ,(first binding) ,(second binding)) loc)
(return t))))

loc)

1

2.4 Reason.lIsp

;»(loose coupling)
(in-package :lrete)

(defvar inst-under-exe nil)

(defun start-reasoning (&aux (repeat t))
(loop

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

136

(unless repeat _
(formatt ll,._,%**********************#**************************")
(format t “~%Reasoning terminated")
(format t "~%To look for the data use - show-data ")
(format t "~%To look for a specific data use - rfetch (...) ")
(format t "~%]Join operation =~a" Joperation)
(format t "~%Rule instantiated ~ =~a" instrule)
(format t "~%Execute Normal Rule =~a" ERule)
(format t "~%Execute Contradiction Rule =~a" ECRule)
(format t "~%Label Computation =~a" Lcomp)
(formatt ||,__,%*********************!“1**#************************")
(return)))
;:Find all applicable rule and store the instances in the conflict set
{(loop
(setf wme (pop (reps-queue *reps*)))
(when (null wme) (return}))
(process-wme wme))
;;First of all : act all contradiction rules
(act-all-contradiction-rules (reps-conflict-set *reps*))
(setf repeat nil)
:: loop until a new datum is inserted or no instant in conflict set
(loop
(setf inst {resolve-conflicts))
(when (null inst) {return)) ; Empty conflict-set: finish resolution.
(when (act inst) ;; When the act insert a new datum in queue-process it.
(incf erule)
(setf repeat t)
(return)))
» ,
.»; Input :Conflict set
;;; Operation : act all contradiction rule
;;; Output :the remaining instance in the conflict set
(defun act-all-contradiction-rules (conflict-set &aux (noncont-rule nil))
(dolist (inst conflict-set)
(when (instance-contradiction inst)
(act inst)
(incf ecrule))
(unless (instance-contradiction inst)
(push inst noncont-rule}))
(setf (reps-conflict-set *reps*) noncont-rule))

:;; You can put here any creteria you want

31N

:.: T use a simple strategy (the last in first out)

113

.- Tt will execute the first nonempty label instance

33

(defun resolve-conflicts ()
(loop

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

137

(setf inst (pop(reps-conflict-set *reps*)})
{unless inst (return))
(setf label (have-new-env? inst))
{when label
(setf (instance-label inst) label)
(return-from resolve-conflicts inst)))
nil) ’

5 Input : Instance
5 Operation : return the label if it exist or compute it
5, Output : label

(defun have-new-env? (inst &aux r)
(setf A (mapcar #(lambda (f)(datum-node f))
(instance-antecedents inst)))
(find-new-envs nil (list (atms-empty-env *atms*)) A))

o Input :Datum
.»; Insert any completly instantiated rule in conflict set.
(defun process-wme (wme)

;- Find all next-node of the correspond type-check node

(setf tch (find-tcheck (get-pred-name wme)))
{unless tch ;; No type checking for this predicate
(push wme (reps-derived *reps*))
(return-from process-wme t))
(setf next-nodes (tcheck-node-nexi-nodes tch))
:;Next node :alpha or t-const
(dolist (node next-ncdes)
(when (alpha-beta? node)
(push wme (alpha-beta-datums node}))
(process-alpha node (list wme)))
(when (t-const-node? node)
(when (and
(process-checkl node wme)
(process-check2 node wme)
{(process-check3 node wme))

(push wme (alpha-beta-datums (t-const-node-next-node node)))

(process-alpha (t-const-node-next-node node}
(list wmme))))))
;. Input * Predicate name
5, Output : type checking node
(defun find-tcheck (p-name)
(dolist {tch (rete-type-checking *rete*))
{when (eq p-name (tcheck-node-name tch)) -
(return-from find-tcheck tch)))
nil)

;;» Input : t-const-node , datum

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

138

i Output : t, nil
., Check the constant values ((fld value)(fld value)...)
;;» Datum here is a single tuple.
(defun process-check! {t-const datum)
(dolist {(check (t-const-node-check] t-const))

(unless (eq (fld-value (first check) 1 datum) (second check))

(return-from process-check1 nil)})

t)
.o; Input ; t-const-node , datum
s Output : t, nil

.5, Check the fields equality ((fld1 f1d2)(fld4 f1d5)...)
;;; Datum here is a single tuple.
(defun process-check? (t-const datum)
(dolist (check (t-const-node-check? t-const))
(unless (eq (fld-value (first check) 1 datum)
(fld-value (second check) 1 datumy))

(return-from process-check2 nil)))

t)

;5 Input : t-const-node , datum
., Output @ t, nil
.5»; Check the test function ((fld1 fld2)(fld4 fld5)...)
.., Datum here is a single tuple.
(defun process-check3 (t-const datum})
(unless (t-const-node-check3 t-const)

{return-from process-check3 t))
(setf tuple (second(first(datum-fact datum)}))
(setf flds (reverse(extract-flds (list tuple))))
(apply (t-const-node-check3 t-const)

(mapcar #(lambda (fld)
(fid-value fld 1 datum}))
flds)))

;;; Input : The Field name, Index ,datum
;;; Output : The value of the field; if it exist
(defun fld-value (fld index datum)
{(setf tuples (datum-fact datum)) .
(dolist (tuple tuples)
{when (= (first tupie) index)
(do ({pattern (second tuple) (rest pattern)))
({(nuil pattern) nil)
(when (eq (first pattern) fld)
(return-from fld-value (second pattern)))))))

;;;Input : List of New Datums

;.:Process first Left and-node ,then right and-node ,
o finally look for p-mem ifit exist.

(defun process-alpha (alpha new-datums)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

139

(process-l-and alpha new-datums)
(process-r-and alpha new-datums)
(process-p-mem alpha new-datums))

..» Join the new datums with fact stored in the right mem of the left and
..» Process the out memory of the and-node
{defun process-l-and (alpha new-datums)
(setf lands (alpha-beta-l-ands alpha))
(dolist (land lands)
.., the following condition is used to prevent repeat work
.:- when the | and r mem for node AND node is the same and is
;;; traversed only in the right direction
{unless (equal (and-node-r-mem land) (and-node-l-mem land))
(setf new-joind-tuples
(join new-datums (alpha-beta-datums (and-node-r-mem land}))
(and-node-o0-mem land) (and-node-check! land}))
(insert-joined-tuple new-joind-tuples (and-node-o-mem land))
(when new-joind-tuples
(process-alpha (and-node-o-mem land) new-joind-tuples)))))

::: Join the new datums with fact stored in the right mem of the right and
;;; Process the out memory of the and-node '
(defun process-r-and {alpha new-datums)
(setf rands (alpha-beta-r-ands alpha))
(dolist (rand rands)
(setf new-joind-tuples
(join (alpha-beta-datums (and-node-l-mcm rand)) new-datums
(and-node-o-mem rand) (and-node-check1 rand)))
(insert-joined-tuple new-joind-tuples (and-node-o-mem rand))
(when new-joind-tuples
(process-alpha (and-node-o-mem Rand) new-joind-tuples))))

;;; Check each new datums with inter-test function (if it exist)
.;; Store the good one in the conflict set
(defun process-p-mem (alpha new-datums)
{unless (alpha-beta-p-mem alpha)
(return-from process-p-mem t})
(setf p-mems (alpha-beta-p-mem alpha))
{dolist (p-mem p-mems)
(dolist (datum new-datums)
(when (process-inter-test p-mem datum)
(update-conflict-set
(p-mem-rule-name p-mem)
(p-mem-contradiction p-mem)
(p-mem-consequent p-mem)
(generate-binding p-mem datum)
(datum-datum-list datum))})))

(defun update-conflict-set (rname cont consequence binding antecedents)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

140

(incf instrule)

(setf lambda-vars (extract-vars consequence))

(eval "(push (make-instance
:rule-name ',rname
:contradiction ',cont ,
:consequence #'(lambda ,lambda-vars ,@consequence)
‘binding ',binding '
.antecedents ',antecedents ;;list of datums
:vars ' lambda-vars)

(reps-conflict-set *reps*))))

;; Input ; p-mem , datum
5 Output : t, nil
;;; Check the inter test function if it exist
(defun process-inter-test (p-mem datum)
{unless (p-mem-inter-test p-mem) (return-from process-inter-test t))
{when (p-mem-inter-test p-mem)
(setf vals (extract-vals datumy))
(apply (p-mem-inter-test p-mem)

vals)))

;> Input ; Datum
5 Output : list of variable values
(defun extract-vals (datum &aux (vals nil} {temp nil}))
(dolist (tp (reverse(datum-fact datum)})
(setf temp nif)
(do ((tuple (second tp) (rest tuple}))
{(null tuple) t)
(when (field? (first tuple))
(push (second tuple) temp)))
(setf vals (append (reverse temp) vals)))
vals)

.;» Input : p-mem node ,datum
., Output : ((7x . value)(..)..)
{(defun generate-binding (p-mem datum &aux (binding nil})
(dolist (loc (p-mem-var-loc p-mem))
(push (cons (first loc) ,
(fld-value {second loc) (third loc) datum))
binding)) '
binding)

;;; Input :right and left datums , out-mem of the and-node ,test
;5 Output : a list of datums (joined tuple test)
(defun join (Jdatums rdatums alpha test &aux (result nil))
(dolist (Id 1datums)
(dolist (rd rdatums)
(incf joperation)
(setf updated-r {inc-index rd))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

141 r

!

(setf joined-tuple (append (datum-fact Id) updated-r))

(setfLd1 (datum-datum-list id))

(setfrd1 (datum-datum-list rd}))

(setf d (make-datum
fact joined-tuple
:datum-list (append ld1 rd1))) .

(when (process-andcheck d test) -

(push d result))))
result)
;;» Input : new-joined tuple

i

., Operation : push them at the datum for the alpha mem

Ec,lefun insert-joined-tuple (new-joind-tuples alpha)
(setf (alpha-beta-datums alpha)
(append new-joind-tuples (alpha-beta-datums alpha)}))

s Input Datums

1%

;;; Output :fact in the datum after increment index

- increment the index in each tuple by one
(defun inc-index (datum &aux (result nil))
(setf facts (datum-fact datumy))
(dolist (fact facts)
(push (list (1+ (first fact)) (second fact)) resuit))

(reverse result))

e <

;i Input : joined tuple , test ((fid1 index fld2 ind)(...))

mm

;. Output : t or nil
(defun process-andcheck (d tests)
(dolist (test tests)
(unless
(eq
(fld-value (first test) (second test) d)
(fld-value (third test) (fourth test) d))

(return-from process-andcheck nil)})

t)

;;; Input :instance
.. Output : t . if it insert a new data
(defun act (inst)
(setf inst-under-exe inst)
(when inst
(apply (instance-consequence inst)
(instantiate-variables (instance-vars inst)
(instance-binding inst)))})

(defun instantiate-variables (conséquent binding) f
(sublis binding consequent)) f

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

142

;:Input: fact

;;Insert in the queue if not exist

;. We have four cases :

5 1- new just,new datum propogate and repeat reasoning
5 2-new just,old datum : propogate

>3- old just,new datum : repeat reasoning

; 4- old just,old datum : nothing

13

213
”’

23

(defun assert! (fact &optional(inst inst-under-exe)
&aux datum node)
(setf datum (is-exist? (cons 'l (list fact))))
(when datum
(setf node (datum-node datum))
(justify-node (instance-rule-name inst)
(instance-label inst)
nil::; this nil will prevent atms recompute the label
node
(mapcar #{lambda (f) (datum-node £)) .
(instance-antecedents inst}))
(return-from assert! nil))
(setf datum (create-datum (cons 'l (list fact)) nil))
(push datum (reps-queue *reps*))
(setf node (datum-node datum))
(justify-node (instance-rule-name inst)
(instance—label inst)
-+ this nil will prevent atms recompute the label
node
(mapcar #(lambda (f) (datum-node f))
(instance-antecedents inst)))

t)

. 1-Assert a new nogood
;»; 2-Justify the contradiction
.. **This will not lead to new reasoning
(defun assert-nogood! (&optional(inst inst-under-exe))
(justify-nogood-node :
(instance-rule-name inst)
nil ;;; no label are computed
t :; this nil will make atms compute the label
(mapcar #(lambda (f) (datum-node f))
(instance-antecedents inst))))

:Copyright (c) 1986-1993 Kenneth D. Forbus, Johan de Kleer and Xerox

:Corporation. All Rights Reserved.
(defun quotize (pattern)
(cond ((null pattern) nil)
((variable? pattern) pattern)
((not (listp pattern)) (list 'QUOTE pattern))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

143

(t *(cons ,(quotize {car pattern))
[(quotize {cdr pattern))))))

2.5 ATMS.Isp
(in-package :Irete)
(defvar *atms* nil)
(setf *atms™* nil)

2 STRUCTURE

o 1- ATMS

;. 2-NODE

o 3- JUSTIFICATION
5y 4- ENVIRONMENT

(defstruct (atms (cprint-function print-atms))
(title nif)

(nodes nil) ;; all nodes
(justs nil) ., all justification
(good-env nil) ;; good environment

(nogood-env nil) ;; nogood environment
(contra-node nil} ;; dummy contradiction node
(empty-env nil)) ;; {{}};; hold in all environment

(defstruct (node (:print-function print-node))
(datum nil) .
{label nil)
(justs nil) ;justify this node
(consequences nil) ;;this node belong to these justification
(contradictory? nil)
(assumption? nil))

(defstruct (just (print-function print-just))
(informant nil)
(consequence nil)
(antecedents nil))

(defstruct (env (:print-function print-env))
(assumptions nil)
(nodes nil))

o PRINT
oo 1- SUMMARY DEF.
. 2- FULL DETAIL.

(defun print-atms (atms stream ignore)
(format t "atms-~a" (atms-title atms)))

(deﬁjn.print-node (node stream ignore)
(format t "node-~a" {node-datum node)))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

144,

(defun print-just (just stream ignore)
(format t "just-~a" (just-informant just)})

(defun print-env (env stream ignore)
(format t "env-~a" (env-assumptions env)))

(defun print-fuli-atms ()

(format t "~%Title:~a" (atms-title *atms*))
(format t "~%Nodes:~a" (atms-nodes *atms*))
(format t "~%]Justs:~a" (atms-Justs ¥atms™*))

(format t "~%Good-envi~a" (atms-good-erv *atms*))
(format t "~%Nogood-env:~a" (atms-nogood-env *atms*))
(format t "~%Contra-node:~a" (atms-contra-node *atms*))
format t "~%Empty-env:i~a" (atms-empty-env *atms*)))
p

(defun print-full-node (nodes)
(dolist (node nodes)

(format t "~%Datum:~a" (node-datum node))
(format t "~%Label:~a" (node-label node))
(format t "~%Justs:~a" (node-justs node))

(format t "~%Consequences:~a" (node-consequences node))
(format t "~%Contradictory:~a" (node-contradictory? node))
(format t "~%Assumption:~a" (node-assumption? node))))

(defun print-full-just (justs)

(dolist (just justs)
(format t "~%Informant:~a” (just-informant just))
(format t "~%Antecedents:~a" (just-antecedents just))
(format t "~%Consequence:~a" (just-consequence just)}))

(defun print-full-env (envs)

(dolist (env envs)
(format t "~%Assumptions:~a" (env-assumptions env))
(format t "~%nodes:~a" {(env-nodes env))))

;. CREATE ALL THE STRUCTURE
1- ATMS ‘

2- CONTRADICTION NODE

3- EMPTY-ENV

4- ENVIRONMENT

5- ASSUMPTION NODE

(defun create-atms (title)
(setq *atms* (make-atms :TITLE title))
(create-contradiction-node)
(create-empty-env)
atms)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

145
!.

(defun create-node (datum &key assumptionp contradictoryp &aux node)
{setq node : ,
(make-node
:‘DATUM datum
:ASSUMPTION? assumptionp
:CONTRADICTORY? contradictoryp))
(push node (atms-nodes *atms*))
(when assumptionp
(setq e (create-env (list node)))
(push e (node-label node))
(push node (env-nodes ¢)))
node) :

(defun create-contradiction-node ()
(setf (atms-CONTRA-NODE *atms*)
(create-node "The contradiction” :CONTRADICTORYP t)))

(defun create-empty-env ()
(setf (atms-empty-env *atms*) (create-env nil)))

(defun create-env (assumptions &aux e}
. (setq e {(make-env :ASSUMPTIONS assumptions))
(setq exist (lookup-env e (atms-good-cnv *Atms*)))
(unless (or exist (nogood? €)) i
(setf (atms-good-env *Atms*) (cons e (atms-good-env *Atms*))))
(if exist exist e))

(defun assume-node (datum)
(create-node datum :assumptionp t))

-+ PROVIDE THE JUSTIFICATION FOR

5 1- NODE .
. 2- CONTRADICTION NODE
(defun eq-just (j1 j2) .
(and (equal (just-informant j1)(just-informant j2))
(equal (just-antecedents j1)(just-antecedents j2))
(equal (just-consequence j1}(just-consequence i73)));

-+ if recompute is true then ignore the label

b 34

.-+ else use the input label

M

(defun justify-node (informant label recompuie
.consequence antecedents &aux just)
(setq just (make-just
INFORMANT informant
:CONSEQUENCE consequence
‘ANTECEDENTS antecedents))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

146

;.- (atms-justs *atms*) ;;;

(unless (member just (node-justs consequence) :test #'eq-just)
(push just (atms-justs *atms*)} ‘
(push just (node-justs consequence))
(dolist (node antecedents) (push just (node-consequences node)))
(propagate just nil (list (atms-empty-env *atms*)) label recompute)
(return-from justify-node t)) '

nil}

-+ if recompute is true then ignore the label

3

.- else use the input label
(defun justify-nogood-node (informant label recompute nodes)
(justify-node informant
label recompute
(atms-contra-node *atms*}
nodes))

;- HELPING FUNCTION

213

(defun env-subsumed-by (env env-list)
(dolist (old-env env-list)
(when (subsetp (env-assumptions old-env)
(env-assumptions env))
(return old-env))))

-“Look for an environment in a list of environment
(defun lookup-env (e env-list)
(dolist (env env-list)
(when (equal-env? env €) (return-from lookup-env env)))
nil)

(defun compare-env (el €2)
(cond ((equal-env? €2 el) :EQ)
((subset-env? el e2) :S12)
((subset-env? €2 e1) :521)

(t NEQ)))

(defun equal-env? (el €2)
(and (subsetp (env-assumptions e2)(env-assumptions el))
(subsetp (env-assumptions el }(env-assumptions e2))

(defun subset-env? (el €2)
(if (subsetp (env-assumptions el) (env-assumptions €2)) t nil))

(defun union-env (el €2)
(create-env

... Check if there exist an environment in the <env-list> Subset of <env>.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

147

(union (env-assumptions el1) (env-assumptions e2))))

;;; Propogate the label through the dependency
(defun propagate (just antecedent envs label recompute &aux new-envs)
(if recompute
(setq new-envs (find-new-envs antecedent envs (just-antecedents just)))
(setq new-envs label)) ¥
(setq consequence (just-consequence just))
(unless new-envs (return-from propagate nil})
(when (node-contradictory? consequence)
(dolist (env new-envs) {new-nogood env))
(return-from propagate nil})
(setq new-envs (whose-still-new new-envs consequence))
(unless new-envs (return-from propagate nil}))
(dolist (supported-just (node-consequences consequence))
(propagate supported-just consequence new-envs nil t)))

(defin whose-still-new (new-env node)
(setq old-env (node-label node))
(dolist (nenv new-env)
(dolist (oenv old-env)
(case (compare-env nenv oenv)
(:812 (setf (env-nodes oenv)
(delete node (env-nodes oenv):count 1))
(setf (node-label node)
(delete oenv (node-label node):count 1))}
(CEQ :S21) (setf new-env
(delete nenv new-env :count 1)))))
(dolist {nenv new-env)
(push node (env-nodes nenv))
(push nenv (node-label node)))
new-env)

(defun find-new-envs (antecedent envs antecedents &aux new-envs)
-envs :new env come to the just from antecedent

)!?

(incf icomp)
(drop-nogoed
(make-minimal
(find-sound-complete-envs antecedent envs antecedents})))

(defun find-sound-complete-envs (antecedent envs antecedents)
(dolist (node antecedents)
(unless (eq node antecedent) ;; in order to process only the new environment
(setq result nil)
(dolist (env envs)
(dolist (node-env (node-label node))
(setq result (cons (union-env env node-env) resuit))))
(setq envs result)))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

148

envs)

(defun make-minimal (env-list &aux (result nil))
(setq temp-list (copy-list env-list}))
(dolist (env env-list)
(setq temp-list (delete env temp-list :count 1))
(unless (env-subsumed-by env temp-list)
(setq result (cons env resuit)))
(setq temp-list (cons env temp-list)))
result)

(defun drop-nogood {env-list &aux (result nil))
(setq temp-list (copy-list (atms-nogood-env *atms*)))
{(dolist {env env-list)
(unless (env-subsumed-by env temp-list)
(setq result {cons env result))))
result)

(defun nogood? (env)
(cond
;i it exist prev
((lookup-env env (atms-nogood-env *atms*)) t}
;:1f there exist ¢ subset of env
({env-subsumed- by env (atms-nogood-env *atms*)) t)
. else return nil

(t nil)))

(defun new-nogood (cenv)
(setf (atms-nogood-env *atms*)
{(cons cenv {(atms-nogood-env *atms*)))
(remove-env-from-labels cenv)
{setf (env-nodes cenv) nil)
(dolist (env (atms-good-env *atms*))
(when (subset-env? cenv env)
(remove-env-from-labels env)
(setf {env-nodes env) nil)
(setf (atms-good-env *atms*)
(delete env (atms-good-env *atms*) :COUNT 1))
(setf (atms-nogood-env *atms*)
(make-minimal (atms-nogood-env *atms*))))

(defun remove-env-from-labels (env)
(dolist (node (env-nodes env))
(setf (node-label node)
(delete env (node-label node) :COUNT 1))))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Appendix 3

Morgue system Program

3.1 Rete.lsp
the same as before.

3.2 Def.lsp

;;; Morgue System

.:: Declaration Part

., 1- SPECIAL VARIABLES .
5, 2- STRUCTURE USED .

;. 3- PRINT FUNCTION .
(IN-PACKAGE :TRETE)

;;; RETE Production System
(defvar *REPS* nil)

(defvar *rule*)

(defvar *RETE* nil)

(defstruct (reps (:PREDICATE reps?)
(:PRINT-FUNCTION print-ri;ps))

(title nil)

(atms nil) ;Assumption beased tr th maintenance system
(rete nil) ;RETE network

(alpha nil) :Memory-node where [l datum are stored there
{(derived nil) :Datums that have no alpha are stored here
(conflict-set nil) ;Conflict-set (instanti jted rules)

(queue nil)) ;Queue used conflict @esolution.

3

(defun print-reps'(reps st ignore)
(format st "REPS:~A" (reps-title reps)):

(defun show-reps ()
(format t "~%Title:~a" (reps-title *reps*))
(format t "~%Atms:~a" (reps-atiys *reps*))
(format t "~%RETE:~a" (reps—nfge *reps*))
(format t "~%QUEUE:~a" (reps—ﬁueue *reps*))

(format t "~%To show full atms Echo fprint-full-atms)")
(format t "~%To show All Data Echo (‘%how-Data)“)
(format t "~%To show Conflict-set Echo (show-conflict-set)"))

5 INSTANCE STRUCTURE
;;; Print Functions

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

150

iy SHOW CONFLICT SET.

(defstruct (instance ((PREDICATE instance?)
(:PRINT-FUNCTION print-instance})
(rule-name nil)
(contradiction nil) ;;weather its contradiction or not.
(consequence nil) ;,un-instantiated consequence

(vars nil) ;;variable in consequence

{antecedents nil) ;;list of antecedents datums

(label nil) ;;label of the antecedents

(del nil) ;;tag used to detect the datum tha must be deleted

(binding nil)) ;;assosiation list with variable binding

(defun print-instance (inst st ignore)
(format st "~%Instance:-")
(format st "~%Rule:~a" (instance-rule-name inst))
(format st "~%Contradiction;~a" (instance-contradiction inst))
(format st "~%Consequence;~a" (instance-consequence inst))
(format st "~%Vars:~a" (instance-vars inst)) !
(format st "~%Antecedents:~a" (instance-antecedents inst))
(format st "~%Labels:~a" (instance-label inst))
(format st "~%Deleted :~a" (instance-del inst))
(format st "~%Binding:~a" (instance-binding inst)))

(defun show-conflict-set (&optional (conflict-set (reps-conflict-set *reps*)))

(dolist (instance conflict-set)
(print-instance instance t nil)))

i Temprory structure used in rete builder

(defstruct (Rule). ;temp rule
(nrame nil}
(ths nil)
(test mil)
(rhs nil)
(flds nil}
(vars nil)
(contradiction nil))

5 RETE NETWORK
.. Print Functions

(defstruct (RETE ((PREDICATE rete?) r
(:PRINT-FUNCTION print-rete)) ;; ROOT NODE
(title Rete-nets) ‘
{type-checking nil)) ;; Nodes to Check the predicate name .

(defun print-rete (rete st ignore)
{format st "RETE:~A" (rete-title rete)))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

151

(defun show-rete (}
(format t "~%Title:~a" (rete-title *rete*))
(format t "~%Type checking Nodes:~a" (rete-type-checking *rete*)))

,,,Type Checking Nodes
(defstruct (Tcheck-node ((PREDICATE tcheck-node?)
(:PRINT-FUNCTION print-T check—node))
(name nil} ;; Name of the predicate
{contradiction nil) ;, weather its a part of contradiction rule.
(next-nodes nil)) ;; alpha-beta or t-const - list of nodes

efun print-Tcheck-node (Tcheck-node st ignore
(defi int-Tcheck-node (Tcheck-node st i)
(format st "TCHECK:~A" (Tcheck-node-name Tcheck-node)))

(defun show-Tcheck-node (&optional (Tchecks (rete-type-checking *rete*)))

(dolist (Tcheck Tchecks)
(format t "~%Name:~a" (Tcheck-node-name Tcheck))
(format t "~%Contradiction;~a" (Tcheck-node-contradiction Tcheck))
(format t "~%Next Nodes:~a" (Tcheck-node-next-nodes Tcheck))))

;.; T-const nodes
(defstruct (T-const-node (PREDICATE t-const- node?)
(PRINT-FUNCTION print-T-const-node))

(id 0) ;5 indexer

(check1 nil) ;; check the constant value ((field value)...)
(check2 nil) ,; check the field in one predicate ((field field)...)
(check3 nil) ;; intra-test-function name

(contradiction nil) ;; weather its a part of contradiction rule.
(next-node nil)) ;; alpha-beta -one node

{defun print-T-const-node (t-const-node st igﬁore)
(format st "TC.~a" (t-const-node-id t-const-node))
(if (t-const-node-check] t-const-node) (format st " Const-test "))
(if (t-const-node-check2 t-const-node) (format st " Equal-var,"))
(if (t-const-node-check3 t-const-node) (format st * Intra-Ext-fun,")))

(defun show-t-const-node (t-const-list)
(dolist (t-const t-const-list)
(format t "~%]Id:~a" (t-const-node-id t-const))
(format t "~%Contradiction:~a" (t-const-node-contradiction t-const))
(format t "~%Const-test:~a" (t-const-node-check] t-const))-
(format t "~%Equal-var:~a" (t-const-node-check2 t-const))
(format t "~%Intra-Ext-fun:~a" (t-const-node-check3 t-const))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

152

(format t "~%Next-node:~a" (t-const-node-next-node t-const))))

bE R

:;» Alph and beta memory nodes

%3

m

(defstruct (alpha-beta (PREDICATE alpha-beta?)
(:PRINT-FUNCTION print-alpha-beta))

(id 0) ; indexer

(Datums nil) ; List of facts

(R-Ands nil} ; Right and node -list

(L-Ands nil) ; Left and node -list
(p-mem nil) : P-mem node if it the next -list

(contradiction nil) ; weather its a part of contradiction rule.
(prev-node nil)) ; pointer to the previous node -one element

(defun print-alpha-beta (alpha-beta st ignore)
(format st "Alpha-beta:~A" (alpha-beta-id alpha-beta)))

(defun show-alp;ha-beta (mem-list)
(dolist (mem mem-list)

(format t "~%ld:~a" (alpha-beta-id mem))
(format t "~%Contradiction:~a" (alpha-beta-contradiction memy))
(format t "~%Datums:~a" (alpha-beta-datums mem))

(format t "~%No of datums :~a" (length (alpha-beta-datums mem)})
(format t "~%R-Ands:~a" (alpha-beta-R-ands mem))

(format t "~%L-Ands:~a" (alpha-beta-L-ands mem))

(format t "~%P-mems:~a" (alpha-beta-p-mem mem))

(format t "~%Prev-node :~a" (alpha-beta-prev-node mem))

(read)))
,,:,, AND nodes

ELE]

(defstruct (AN]j-node (:PREDICATE and-node?)
(:PRINT-FUNCTION print-and-node})

(id 0) ,; indexer .

(check] nil) ;; check the var between predicates ((fld2 ind fld2 ind)..)
(contradiction nil) ;; weather its a part of contradiction rule.

(L-mem nil) :: Left Memory Nodes -one element

(R-mem nil) :; Right Memory Nodes -one element

(O-mem nit)} ;; Output Memory Nodes -one element

(defun print-and-node (and-node st ignore)
(format st "And:~A" (and-node-id and-node)))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

153

(defun show-and-node (and-list)
(dolist (and-node and-list) :
(format t “~%Id:~a" (and-node-id and-node))

(format t "~%Contradiction:~a" (and-node-contradiction and-node))
(format t "~%Eq-var:~a" (and-node-checkl and-node))

(format t "~%Left mem :~a" (and-node-L-mem and-node))
(format t "~%Right mem :~a" (and-node-R-mem and-node))
(format t "~%OQOutput mem :~a" (and-node-O-mem and-node))))

’
;;, P-memory nodes

Lhb

(defstruct (P-mem ((PREDICATE p-mem?)
(:PRINT-FUNCTION print-p-mem))
(rule-name nil} ; the name of the rule corresponding to it
(inter-test nil) ; the namie of the inter test function
(consequent nil) ; the consequent of the tule (un-instantiated)
(contradiction nil); weather its contradiction or not.
(var-loc nil)) ; ((?x fld index)...)

{(defun print-p-mem (p-mem st ignore) .
. (format st "P-mem ~A" (p-mem-rule-name p-mem)})

(defun show-p-mem (p-mem-list)
(dolist (p-mem p-mem-list)
(format t "~%Rule Name :~a" (p-mem-rule-name p-mem))
(format t "~%Contradiction:~a" {p-mem-contradiction p-memy))
(format t "~%Test Name ~2" (p-mem-inter-test p-mem)) -
(format t "~%Consequent:~a" (p-mem-consequent p-mem))
(format t "~%Var-loc :~a" (p-mem-var-loc p-mem))))

3.3 Build.lsp

(in-package :tRETE)
;.; Special variable decleration

(defvar *dir* 'r) ; special variable to determine the direction of build rete net
(defvar *r-env* nil) ; place to hold the binding from right

(defvar *l-env* nil) ; place to hold the binding from left

(defvar *mem-id* 0) ; Counter for alpha-node

(defvar *con-id* 0) ; Counter for t-const-node

(defvar *and-id* 0) ; Counter for and-node

(setf *con-id* 0)

(setf *and-id* 0)

(setf *mem-id* 0)

LR

.. Variable Needed for debug and tree traverse
(defvar *tc* nil) '

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

154

(setf *tc* nil)
(defvar *tch* nil)
(setf *tch* nil}
(defvar *al* nil)
(setf *al* nil)
(defvar *ad* nil)
(setf *ad* nil)
(defvar *p* nil)
(setf *p* nil)

oun de sk ol ol o ok o ok ok o ok ok ok o o ok ok ok o ke o ke ok o ke ke ke
EE3)

;;: Main function

;0 *rule*-test is a test over all predicate
vew ookl ko kb ok ok ok ko ok ok ke ok ok ok

an

(defun create-rete ()
(setf *r-env* nil)(setf *l-env* nil){(setf *dir* 'r)
(create-p-mem (process-antecedents (decompose-ants))))

.;; Decompose each antecedent into a antecedent and a test
. Input: ((pl .)test #f (p2 .))
5 Output: ({((p1 ..) #'f) ((p2 ..} nil))

(defun decompose-ants (&optional (ths (rule-ths *rule*)) &aux nlhs)
(do ((ants lhs (rest ants))
(nlhs nil})
((endp ants) (reverse nlhs))
(cond ((and (listp (first ants)) (eq (second ants) :test))
(push (list (first ants) (third ants)) nlhs)
(setf ants (rest(rest ants))))
(t (push (list (first ants) nil) nlhs)))))

::» Main function in build a rete for each rule

5 Input : (((p1 ..) #1) ((p2 ..) nil)) .
;;» Output: alpha-beta Memory Node .

(defun process-antecedents (lhs)
(cond ((endp lhs) nil)
(t (anded (process-antecedents (rest ths}))
(process (first lhs))))))

- Process one antecedent and create type-checking ,t-const node,alpha-beta

LER]

» Input :((p1 ..) #1)
;;; Output: alpha-beta Memory Node .

(defun process {ant)
(updatel-l-r-env ant } ;; update r-env,l-env
(setf checkl {(compute-checkl ant)) ;; constant check
(setf check2 (compute-check2 ant)) ;; var equality

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

¢

155

(setf check3 (second ant)) :; function name

--1f there is a test create t-const else create type-check-node only

(if (or checkl check2 check3) '
(alpha (t-const check] check2 check3 (type-check ant)))
(alpha (type-check ant))}))

;;; Update the r-env ,l-env according to the new pattern

; Input :((pl ..) #1) ,*dir*
;» Qutput :((f1d1 var index))

(defun updatel-l-r-env (ant)

" (cond ((eq *dir* 'r)

(setf *dir* ')

(setf *r-env* (generate-env ant}))
({eq *dir* ')

(setf *|-env* (generate-env ant)))))

s Input :((pl ..) #D
;»; Output :((fld1 1 varl) ...)

(defun generate-env (ant &aux (env nil))
(do ((antl (first ant) (rest ant1))
(env nil))
({(endp ant1) (reverse env))
(when (and (field? (first ant1)) (variable? (second antl1})))
(push '(,(first ant1) 1 ,(second ant1)) env))))

;;; Check the constant field in a predicate

b3 L]

s Input {((p1 ..) #1)
., Output :((fld val)...)

(defun compute-check! (ant &aux (env nil))
(do ((antl (first ant) (rest ant1))
(env nil))
((endp antl) (reverse env))
(when (and (field? (first ant1)) (not (variable? (second ant1)}))
(push "(,(first ant!) ,(second ant1)) env))))

. Check if two or more variable are equal
s Input :((p1 ..) #1)
:»; Output :(fld1 1d2)
(defun compute-check2 (ant &aux (env nil))
(do ({ant1 (first ant) (rest ant1))
(env nil}))
((endp ant1) (reverse env))
(when (field? (first ant1))
(setf fid (first antl))
{setf var (second antl))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

156

(do ((rem (rest(rest ant1)) (rest rem) })
((endp rem))
(when (and (field? (first rem)) (eq (second rem) var))
(push '(,fld ,(first rem)) env)

(return t))})))

.- Create type checking node , If it exist return it

ER R

; Input :((pl ..) #1)
;;» Output :Type Checking node
(defun type-check (ant)
(setf tch (fookfor-tch ant))
(if tch tch (create-type-checking ant)))

;.. Create alpha-mem node and assosiate it with the node
. Input : type-checking node or t-const or and node

:.: Output : Alpha-beta memory-node

;; (when (rule-contradiction *rule*)

;; (setf (alpha-beta-contradiction (t-const-node-next-node node)) t))

(defun alpha (node)
(cond

({tcheck-node? node)
;; if it exist return it else create a new one
(lookfor-alpha-beta node))

((and (t-const-node? node)
(alpha-beta? (t-const-node-next-node node)))
(t-const-node-next-node node))

((t-const-node? node)
(setf *mem-id* (1+ *mem-id*))
(setf (t-const-node-next-node node)

(make-alpha-beta :id *mem-id* :prev-node node
:contradiction (rule-contradiction *rule*)))

(push (t-const-node-next-node node) *al*} ;;,==>test
(push (t-const-node-next-node node) (reps-alpha *reps*}).
(t-const-node-next-node node))

((and (and-node? node) (and-node-o-mem node))
(and-node-o-mem node))

((and-node? node)
(setf *mem-id* (1+ *mem-id*))
(setf (and-node-o-mem node)

(make-alpha-beta :id *mem-id* :prev-node node
:contradiction (rule-contradiction *rule*)))

(push (and-node-o-mem node) *al*) ;;==>test
(and-node-o-mem node))))

- fook if one of the node is a mem node ;; assosiated with type-checking

LR E]

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

157

(defun lookfor-alpha-beta (tcheck-node)
(dolist (node (tcheck-node-next-nodes tcheck-node)}
(when (alpha-beta? node)
(return-from lookfor-alpha-beta node)))
(create-alpha-beta tcheck-node))

;;; create memory node
;;; join it to the previous node

(defun create-alpha-beta (tcheck-noae)
(setf *mem-id* (1+ *mem-id*))
(setf ab (make-alpha-beta :id *mem-id* :prev-node tcheck-node
:contradiction (rule-contradiction *rule*)))
(push ab *al*) ;;;test =>
(setf (tcheck-node-next-nodes tcheck-node) -
(Rpush ab (tcheck-node-next-nodes tcheck-node)))
(push ab (reps-alpha *reps*))
ab)

;;; Look if a type-checking node for the ant exist previosly
(defun lookfor-tch (ant) '
(setf p-name (first(first ant)))
(dolist (tch (rete-type-checking *rete*))
(when (eq p-name (tcheck-node-name tch}))
(return-from lookfor-tch tch))))

;. Create a type checking structure and return it

i

;»» and join it to the root

(defun create-type-checking (ant)

(setf tc (make-~tcheck-node :name (first(first ant))
:contradiction (rule-contradiction *rule*)))

(push tc *tch*) ;;;==

(push tc (rete-type-checking *rete*))

tc)

- if there exist t-const return it efse create a t-const node

(defun t-const (check] check2 check3 tcheck-node)
(setf t-const-node (lookfor-t-const checkl check2 check3 tcheck-node))
(if t-const-node

t-const-node

;; to make closure around the function

(eval '(create-t-const ',check! ',check? ,check3 ',tcheck-node})))

.- Look if a t-const node for the type-checking node. is exist previosly
., must have the same condition

LD L]

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

158

(defun lookfor-t-const {ck1 ck2 ck3 tcheck-node)
(dolist (node (tcheck-node-next-nodes tcheck-node))
(when (and (t-const-node? node)
(t-const-equal? node ck1 ck2 ck3))
(return-from lookfor-t-const node))))

.5, create t-const node structure and return it
;;, join it to the previous type-checking node

(defun create-t-const (ck1 ck2 ck3 tcheck-node)
(setf *con-id* (1+ *con-id*))
(setf tc (make-t-const-node
:id *con-id*
:contradiction (rule-contradiction *rule*)
:check] ckl
:check2 ck2
:check3 ck3))
(setf (tcheck-node-next-nodes tcheck-node)
(Rpush tc (tcheck-node-next-nodes tcheck-node)))
(push tc *tc*) ;;;=>
tc)

.;; check if the tests are in this t-const-node or not

{defun t-const-equal? (r:ode ckl ck2 ck3)

(and
{equal (t-const-node-check3 node) ck3)
(equal-ck (t-const-node-check2 node) ck2)
(equal-ck (t-const-node-checkl node) ckl)))

(defun equal-ck {ck1 ck2)
(unless (= (length ck1) (length ck2)) (return-from equal-ck nil)}
(dolist (item ck1)
(unless (member item ck2 :test #'equal) (return-from equal-ck nil}))

t)

;;; Main function to join between antecedents
;;; Create and-node , p memory node

;. Input :two alpha-beta nodes

;;; Output :one alpha-beta

(defun anded (r-mem l-mem}
(f (null r-mem) (return-from anded l-mem))

(setf inter-test (update2-I-r-env)) ;; update r-env,l-env,dir,compute inter-test

(setf Out-mem-and-node {lockfor-and-node inter-test 1-mem r-memy))
(if Out-mem-and-node

Out-mem-and-node

(alpha(create-and-node inter-test l-mem r-mem))))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

159

;s Input *r-env* *l-env* *dir*

5, Output *r-env* after put I-env at the begining of the r-env
N and increment the index of the old *r-env*

R and return the inter-test

(defun update2-l-r-env (&aux (nrenv nilj)
(dolist (renv *r-env*)

(push "(,(first renv) ,(1+ (second renv)) ,(third renv)) nrenv))

(setf nrenv (reverse nrenv))

(setf inter-test (compute-inter-test *l-env* nrenv))
(dolist (lenv *l-env*)(push lenv nrenv))

(setf *r-env* nrenv)

{(setf *1-env* nil)

inter-test)

;;;Compute the inter test between the right and the left env
;»nput : R-env L-env
;;Output ; Test

(defun compute-inter-test (l-env r-env &aux (test nil))
(dolist (L [-env)
{setf lvar (third L))
{dolist (R r-env)
(setf rvar (third R))
(when (eq lvar rvar)
(push "(,(first I) ,(second I) ,(first R) ,(second R)) test))))
test)

;»; create and-node and join it to the mem-nodes

(defun create-and-node (test 1 1)
(setf *and-id* (1+ *and-id*))
(setf and-node (make-and-node
;id *and-id*
:contradiction (rule-contradiction *rule*)
-check] test
:l-mem |
‘r-mem r})
(push and-node *ad*) ;;;==>
(setf (alpha-beta-r-ands r)
(Rpush and-node (alpha-beta-r-ands r)))
(setf (alpha-beta-l-ands 1)
(Rpush and-node (alpha-beta-l-ands 1)))
and-node)

;»» look if there exist a previously created and node
;;; if yes return the output mem

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

160

(defun lookfor-and-node (test 1 r)
(dolist (left-and (alpha-beta-l-ands 1))
(when (and (member left-and (alpha-beta-r-ands r) «test #'eq)
(equal-and? left-and test))
(return-from lookfor-and-node (and-node-o-mem left-and})))))

(defun equal-and? (anode test)
(unless (= (length test) (length (and-node-checkl anode)))
(return-from equal-and? nil))
(dolist (item (and-node-checkl anode))
(unless (member item test :test #'equal) (return-from equal-and? nil)))

t)

;»» After finish build a rete nets for a rule you need to create a p_mem
;5 for this rule and assosiate it to the last node

;5 if there is a test in whole rule you must process this test

5 Input :alpha-beta

;;; Output :p-mem

(defun create-p-mem (node &optional (inter-test-fin (rule-test *rule*)))
(eval "(setf p (make-p-mem
:rule-name ' (rule-name *rule*)
:contradiction ,(rule~-contradiction *rule*)
‘inter-test inter-test-fin
:consequent ' (rule-rhs *rule*)
:var-loc ',(compute-var-loc))))
(push p *p*) ;;;=>
(SETF (alpha-beta-p-mem node)
(rpush p (alpha-beta-p-mem node)))
p) '

:+- find the var loc using the *r-env* and vars in *rule*
;»; Output ; ((?x fld index)....)

(defun compute-var-loc (&aux (loc nil))
(dolist (var (rule-vars *rule¥*))
(dolist (binding *r-env*)
(when {eq (third binding) var)
{push "(,var ,(first binding) ,(second binding)} loc)
(return t)))) '

loc)

;:Input citem ,node list

.,;Operation :insert the item in the node list at the begining if its
e :belong to the contradiction node

s -¢lse at the end

;1 This help in reasoning : by give the contradiction more priority

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

" 161

... Over the normal rule

(defun Rpush (item node-list)
(when (rule-contradiction *rule*)
(setf node-list (append (list item) node-list)))
(unless (rule-contradiction *rule*)
(setf node-list (append node-list (list 1tem))\)
node-list)

3.4 Reason.Isp
., Morgue System
;;; Rete Reasoning System Coupled With Atms (tight coupling)

(in-package :Trete)

(defvar inst-under-exe nil}

(defvar *visited-datums*) ;; list to store all the datuims that must be

(setf *visited-datums* nil) ;; traveresed by the rete to delete the empty
;; label datums

(defvar *visited-mem*) ;; list to store all the mem that must be

(setf *visited-mem* nil) ;; visited to delete the empty labe! datums

(defun start-reasoning {&aux (repeat t))
(loop
{unless repeat
(FOrmat t "~k F#HEHHRERRRAKAKAKHHKRHAKAKHAHSRERRR AR AARA R A
(format t "~%Reasoning terminated")
(format t "~%To look for the data use - show-data ")
(format t "~%To look for a specific data use - rfetch (...} ")
(format t "~%Join operation =~a" Joperation)
(format t "~%Rule instantiated =~a" instrule)
(format t "~%Execute Normal Rule =-a" ERule)
(format t "~%Execute Contradiction Rule =~a" ECRule)
(format t "~%Label Computation =a" Lcomp) _
(format t " %*******************#********#********************“)
(return))
;;Find alt applicable rule and store the instances in the conflict set
(loop
(setf wme (pop (reps-queue *reps*)))
(when (null wme}) (return))
{process-wme wme))
;.Contradiction rule is fired as soon as they are instantiated
;:which is mean that those rule is not stored in conflict set
(setf repeat nil)
;;Loop until a new datum is inserted or no instant in conflict set
(loop
(setf inst (simple-resolve-conflicts))
(when (null inst) (return)) ; Empty conflict-set: finish resolution.
(when (act inst) ;; When the act insert a new datum in queue-process it.
(incf erule)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

162

(setf repeat t)
(return)))))

;;; Input :contradiction inst
;;; Operation : act contradiction rule
(defun act-contradiction-rule (inst)
(incf ecrule)
(act inst)
(filter-rete *visited-datums*))

;;» You can put here any creteria you want ;
;»; T use a simple strategy (the last in first out) ;
(defun simple-resolve-conflicts ()
(loop
(setf inst (pop (reps-conflict-set *reps*)))
(unless inst (return-from simple-resolve-conflicts nil))
(unless (instance-del inst) (return)))
(setf (instance-label inst)
(The-label-of {first(instance-antecedents inst))))
inst)

(defun the-label-of (datum)
(datum-label datumy))

. Input : Antecedents-datums
;;; Operation ; compute the label.
;;; Output : label

{(defun have-new-env? (Antecedents &aux r)
(find-new-envs nil (list (atms-empty-env *atms*)) Antecedents))

.5 Input :Datum
;»» Insert any completly instantiated rule in conflict set.

(defun process-wme (wme &aux d)
;;» Check the existence of the single tuple
(setfd (1s-ex1st'? (first{datum-fact wme))}) ;;; Search in all smgle-tuples
;»;1- if it exist previously return it
{when d)
;; justify the tuple
{when (datum-justs wme)
(setf (just-consequence (first(datum-justs wme))) d))
;;compute the new label
(setq new-envs (whose-still-new (datum-label wme) d))
;;,if there is a new environmets
(when new-envs (process-tcheck d nil))
(return-from process-wme nil))
;1;2- not exist previously

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

163

(unless d

(unless {datum-assumption? wme)(dolist (env (datum-label wme)) (push wme (env-

datums env)})))
{push wme (atms-datums *atms*))
(process-tcheck wme t})))

;,.input :the single tuple , flag used to msert or not insert the tuple
(defun process-tcheck (wme ins)
(setf tch (find-tcheck (get-pred-name wme)))
(unless tch ;; No type checking for this predicate
(when ins (push wme (reps-derived *reps*)))
(return-from process-tcheck t))
;; Find all next-node of the correspond type- _check node
(setf next-nodes (tcheck-node-next-nodes tch)) ;;Next node :alpha or t-const
(dolist (node next-nodes)
(when (alpha-beta? node)
(when ins
(push wme (alpha-beta-datums node))
;Regist the alpha in wme
(push node (datum-alpha-list wme)))
(process-alpha node (list wme)))
(when (t-const-node? node)
(when (and
ins
(process-checkl node wme)
{process-check2 node wme)
(process-check3 node wme))
(push wme (alpha-beta-datums (t-const-node-next-node node)))
:Regist the alpha in wme
(push (t-const-node-next-node node)(datum-alpha-list wme))
(process-alpha (t-const-node-next-node node) (list wme)))
(when (and (not ins) '
(member (t-const-node-next-node node) (datum-alpha-list wme}))
(process-alpha (t-const-node-next-node node) (list wme)))

)

.;; Input : Predicate name
;;; Output ; type checking node
(defun find-tcheck (p-name)
(dolist (tch (rete-type-checking *rete*))
(when {(eq p-name (tcheck-node-name tch))
(return-from find-tcheck tch)))
nil}

;»; Input : t-const-node , datum
:.» Output : t, nil
; Check the constant values ((fid value)(ﬂd value))

333

}’!

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

164

;,; Datum here is a single tuple,

121

(defun process-check] (t-const datum)
(dolist (check (t-const-node-check] t-const})

(unless (eq (fid-value (first check) 1 datum) (second check))

(return-from process-check] nil}))

t)

;. Input : t-const-node , datum

., Output < t, nil

;;; Check the fields equality ((fld1 fld2)(fld4 f1dS)...)

;:; Datum here is a single tuple.

(defun process-check2 (t-const datum)

(dolist (check (t-const-node-check? t-const))
{unless {eq (fld-value (first check) 1 datum)
(fld-value (sec:ond check) 1 datum))
(return-from process-check2 nil}))

t)

;;» Input : t-const-node , datum
,;; Output : t, nil _
::: Check the test function ((fld1 fld2){fld4 fid5)...)
.;; Datum here is a single tuple.
(defun process-check3 (t-const datum)
(unless (t-const-node-check3 t-const)

(return-from process-check3 t)}
(setf tuple (second(first(datum-fact datumy))))
(setf flds (reverse(extract-flds (list tuple))))
(apply (t-const-node-check3 t-const)

(mapcar #(lambda (fld)
(fld-value fld 1 datum))
flds)))

;;; Input : The Field name, Index ,datum
;»; Output : The value of the field; if it exist
(defun fld-value (fld index datum)
(setf tuples (datum-fact datum))
(dolist (tuple tuples)
{when (= (first tuple) index)
(do ({pattern (second tuple) (rest pattern)})
((null pattern) nil)
(when (eq (first pattern) fld}
(return-from fld-value (second pattern))))})}

;»;Input : List of New Datums

;;:Process 1- P-mem first (if this belong to cont-rule then fire it)
2- process contradiction left-and

Y 3- process contradiction right-and

o 4- process normal left-and

L)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

165

o 5- process normal right-and

(defun process-alpha (alpha new-datums)
(process-p-mem alpha new-datums)
(setf new-datums (rem-del-datum new-datums))
(process-l-and alpha new-datums t) ;Contradiction
(process-r-and alpha new-datums t) ;Contradiction
(process-l-and alpha new-datums nil) ;Normal
(process-r-and alpha new-datums nil) ;Normal

)

;5 INPUT : a set of datums
;,; OUTPUT : only datums not set as deleted
(defun rem-del-datum (datums &aux (new-datums nil})
(dolist (d datums)
(uniess (datum-del d)
(push d new-datums)))
new-datums)

;;; Join the new datums with fact stored in the right mem of the left and
... Process the out memory of the and-node
;;; cont : to determine weather you want to process contradiction and or not
(defun process-l-and (alpha new-datums cont)
(setf lands (alpha-beta-l-ands alpha))
(dolist (land lands)
{when (equal (and-node-contradiction land) cont)
; the following condition is used to prevent repeat work
: when the | and r mem for node AND node is the same and is
;; traversed only in the right direction
(unless (equal (and-node-r-mem land) (and-node-l-mem land))
(setf new-joind-tuples
(join new-datums (alpha-beta-datums (and-node-r-mem land))
(and-node-o-mem land) (and-node-check1 land)})
(when new-joind-tuples
(process-alpha (and-node-o-mem land) new-joind-tuples))))))

!”

,’J

.- Join the new datums with fact stored in the right mem of the right and
:;; Process the out memory of the and-node
(defun process-r-and (alpha new-datums cont)
(setf rands (alpha-beta-r-ands alpha})
(dolist (rand rands)
(when (equal (and-node-contradiction rand) cont)
(setf new-joind-tuples
(join (alpha-beta-datums (and-node-l-mem rand)) new-datums
(and-node-o-mem rand) (and-node-check] rand)))
(when new-joind-tuples
(process-alpha (and-node-o-mem Rand) new-joind-tuples)))))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

166

.. Check each new datums with inter-test function (if it exist)

123

.5, Store the good one in the conflict set

.o, If the p-mem belong to contradiction rule then do not store it
;. in the conflict set instead fire it

(defun process-p-mem (alpha new-datums) '
(unless (alpha-beta-p-mem alpha)(return-from process-p-mem t))
(setf p-mems (alpha-beta-p-mem alpha})
(dolist (p-mem p-mems)
(setf new-datums (rem-del-datum new-datums));some may be deleted
(dolist (datum new-datums)
(when (process-inter-test p-mem datum)
(setf inst (is-inst-exist-prev? datum (p-mem-rule-name p-mem)))
(unless inst
(update-conflict-set
(p-mem-rule-name p-mem)
(p-mem-contradiction p-mem)
(p-mem-consequent p-mem)
(generate-binding p-mem datum)
(list datum)))
(when (p-mem-contradiction p-mem) ;;contradiction rule
(decf instrule) ;; realy its not stored in the conflict set
(act-contradiction-rule (simple-resolve-conflicts)))

m

.»; Input :datum and rule-name
;;» Output :If an instance i3 exist previously.
(defun is-inst-exist-prev? (datum Rname)
(dolist (j (datum-consequences datum)}
(when {and (instance? (just-consequence j))
(equal (instance-rule-name (just-consequernce f)) rname))
(return-from is-inst-exist-prev? (just-consequence j))))
nil) -

(defun update-conflict-set (rname cont consequence binding antecedents)

(incf instrule)

(setf lambda-vars (extract-vars consequence))

(eval “(push (make-instance
“rule-name ',rname
:contradiction ‘,cont
:consequence #(lambda lambda-vars ,@consequence)
:binding ',binding
-antecedents ' antecedents ;list of datums
-vars ' Jambda-vars) "

(reps-conflict-set *reps*)))
(justify-inst 'inst (first(reps-conflict-set *reps*}) antecedents))

.; Input : p-mem , datum
;;; Output : t, nil

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

167

;;; Check the inter test function if it exist
{(defun process-inter-test (p-mem datum)

(unless (p-mem-inter-test p-mem) (return-from process-inter-test t))

{when (p-mem-inter-test p-mem)
(setf vals (extract-vals datum))
(apply (p-mem-inter-test p-mem)
vals)))
;e Input : Datum
;;» Output ; list of variable values
(defun extract-vals (datum &aux (vals nil) (temp nil)}
(dolist (tp (reverse(datum-fact datum)))
(setf temp nil)
(do ((tuple (second tp) (rest tuple)))
{(null tuple) t}
{when (field? (first tuple))
(push (second tuple) temp)))
(setf vals (append (reverse temp) vals}))
vals)

i»s Input : p-mem node ,datum
. Output : ((7x . value)(..)...)
(defun generate-binding (p-mem datum &aux (binding ml))
+ (dolist (loc {p-mem-var-loc p-mem))
(push (cons (first loc)
(fld-value (second loc) (third loc) datum))
binding))
binding)

.; Input :right and left datums , out-mem of the and-node ,test
..» Output : a list of datums (joined tuple test)
(defun join (Idatums rdatums alpha test &aux (result nil))
(dolist (id ldatums)
{(dolist (rd rdatums)

(setf label (have-new-env? (list Id rd)))

(setfjt (is-joined-tuple-exist-prev Id rd alpha))

(when jt ;; there exist a joined tuple previously

(setq new-envs (whose-still-new label jt)) ;; update jt label

(when new-envs ;;; there is a new environmets
(push jt result)}))
(unless jt ;; no joind tuple created previosly
(incf joperation)
(setf updated-r (inc-index rd))
(setf joined-tuple (append (datum-fact 1d) vpdated-r))
(setf d (make-datum :fact joined-tuple))
(when (process-andcheck d test}
(when label ;;it's label is not empty
(process-new-joined-tuple d 1d rd alpha label)
(push d result)}))))

result)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

168

;oo Input :left datum amd right datum and out-mem
;;; Output :If a joined tuple is exist previously return it
(defun is-joined-tuple-exist-prev (1d rd out-mem)
(dolist (j (datum-consequences ld))
(when (and (member out-mem (datum-alpha-list (just-consequence j}))
(or (and (eq rd (first (just-antecedents j}))
(eq I1d (second (just-antecedents j})))
(and (eq Id (first (Just-antecedents j)))
(eq rd (second (just-antecedents j))))))
(return-from is-joined-tuple-exist-prev (just-consequence j) }))
nil)
55, iF1t is not already exist do
1- establish the links between right and left datums with joined tuple
; 2- build a just without recompute the label
i 3- regist the out-mem in the joined tuple
(defun process-new-joined-tuple (d Id rd alpha label)
(justify-datum 'PJ d (list Id rd))
(push d (alpha-beta-datums alpha))
(push alpha (datum-alpha-list d})
(setf (datum-label d) label)
(dolist (env label) (push d (env-datums env)))
(push d (atms-datums *atms*}))
d)

’!7

233

. Input Datums
:.» Output :fact in the datum after increment index
:;: increment the index in each tuple by one
(defun inc-index (datum &aux (result nil})

(setf facts (datum-fact datum))

(dolist (fact facts)

(push (list (1-+ (first fact)) (second fact)) result))
(reverse result})

333

. Input : joined tuple , test ((fld1 index fld2 ind)(...})
;. Output : t or nil
(defun process-andcheck (d tests)
{(dolist (test tests)
(unless
(eq
(fld-value (first test) (second test) d)
(fld-value (third test) (fourth test) d))
(return-from process-andcheck nil})}

t)

;;; Input :instance
,;; Output : t . if it insert a new data

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

169

{defun act (inst)
;; to break the connection between datum and the instance
(setf justs (datum-consequences (first(instance-antecedents inst))))
{dolist (j justs)
{when (eq (just-consequence j) inst)
(setf (datum-consequences (first(instance-antecedents inst)))
(delete j (datum-consequences (first(instance-antecedents inst)))))))

(setf inst-under-exe inst)
(when inst
(apply (instance-consequence inst)
(instantiate-variables (instance-vars inst)
' (instance-binding inst}))))

(defun instantiate-variables {consequent binding)
{sublis binding consequent))

;xInput : fact
;;;Insert in the queue
5:We have four cases :

(defun assert! (fact &optional(inst inst-under-exe)
&aux datum node)
;;temp datum
(setf datum (create-datum (cons 'l (list fact)) nil })
(justify-datum "Inferred datum (instance-antecedents inst))
{(push datum (reps-queue *reps*))
(setf (datum-label datum) (datum-label (first(instance-antecedents inst))))

t)

;. 1-Assert a new nogood

.. 2-Justify the contradiction datum

(defun assert-nogood! (&optional(inst inst-under-exe))

(setf datum (atms-contra-datum *atms*))

(justify-datum 'Cont datum (instance-antecedents inst))

(setf *visited-datums* nil}

(dolist (env (datum-label (first(instance-antecedents inst))))
(new-nogood env)))

;;:Input :all the datums that become empty label because it's env become nogood
;;;Operation :traverse all the linked tuple and filter the rete
;;;Output :all the empty label tuple is removed from the rete
(defun filter-rete (datums)

.. record all mem and datums

(setf *visited-mem™* nil)

(dolist (d datums)

(process-datum d))
;; visit all mem and delete all marked datums

(loop

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

170

(setf mem (pop *visited-mem*))

{unless mem (return)}

(do ((d (alpha-beta-datums mem) (rest d)))

((null d))
(when (datum-del (first d))
(setf (atms-datums *Atms*)
(delete (first d) (atms-datums *atms*) :test #'eq))
;:call a procedure to delete just
(dolist (just (datum-justs (first d)))
(dolist (d1 (just-antecedents just))
(setf (datum-consequences d1) ;;to be sure only
(delete just (datum-consequences d1) :test #eq))))
(rplaca d nil)))

(setf (alpha-beta-datums mem) (remove nil (alpha-beta-datums mem))))
-:some of the datums in reps-derived become empty label and must be deleted
(do ({d (reps-derived *reps*) (rest d)})

((nuli d))
(unless (datum-label (first d))
(setf (datum-del (first d)) t)
(setf (atms-datums * Atms*)
(delete (first d) (atms-datums *atms*) :test #eq))
;;call a procedure to delete just
(dolist (just (datum-justs (first d)))
(dolist (d1 (just-antecedents just))
(setf (datum-consequences d1) ;;to be sure only
(delete just (datum-consequences d1) :test #eq))))
(rplaca d nil)})
(setf (reps-derived *reps*) (remove nil (reps-derived *reps*))))

;;:Input :datum
::Operation :traverse the alpha and links until end
(defun process-datum (d) '
(dolist (alpha (datum-alpha-list d})
(unless (datum-label d)
(setf (datum-del d} t)
(setf (atms-datums *Atms*)}
(delete d (atms-datums *atms™) :test #'eq))
(unless (member alpha *visited-mem* :test #'equal)
(push alpha *visited-mem*)) '
(do ((justs (datum-consequences d) (rest justs)))
((null justs)
(setf (datum-justs d) (remove nil (datum-justs d))))
(cond ((instance? (just-consequence(first justs)))
(setf (instance-del (just-consequence (first justs))) t)
(rplaca justs nil)) ')
(t (process-datum (just-consequence(first justs)})))N))

:Copyright (¢) 1986-1993 Kenneth D. Forbus, Johan de Kleer and Xerox

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

171

;Corporation. All Rights Reserved.
(defun quotize (pattern) '
(cond {(nuil pattern) nil)
((variable? pattern) pattern)
((not (listp pattern)) (list 'QUOTE pattern))
(t *(cons ,(quotize (car pattern))
,(quotize (cdr pattern)}))})

3.5 ATMS.Isp

., All definition and structure used in Atms .

.. All Function related to Atms operation.

- In This Atms the nodes and the justification are integrated with

;; the datums in the rete Memory node ,

.. while the ATMS here is used only for environment manipulation

(In-package :Trete)
(defvar *atms* nil)
(setf *atms* nil)

s STRUCTURE

oy 1- ATMS

5y 2- ENVIRONMENT

o 3- DATUMS

(defstruct (atms (;print-function print-atms))
(title nil)
(datums nil) ;; all datums
(good-env nil) ., good environment

(nogood-env nil) ;; nogood environment
(contra-datum nil) ;; dummy contradiction datum
(empty-env nil)) ;; {{}};; hold in all environment

(defun print-atms (atms stream ignofe)
(format t "atms-~a" (atms-title atms)))

(defun print-full-atms ()
(format t "~%Title:~a" (atms-title *atms*))
(format t "~%Datums:~a" (atms-datums *atms*))
(format t "~%Good-env:i~a" (atms-good-env *atms*))
(format t "~%Nogood-env:~a" (atms-nogood-env *atms*)))

5 DATUM STRUCTURE <Fact>
.. PRINT FUNCTIONS
(defstruct (datum (PREDICATE datum?)
(:PRINT-FUNCTION print-datum))
(fact nil)
(assumption? nil) ;; Weather it is an assumption or not
(alpha-list nil) ;; where the datum is stored

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

172

Gusts nil) ;;justify this DATUM

(consequences nil);;this DATUM belong to these justification
(label nif) ;; Label of the datum

(del nil)) ;; tag used to detect the datum that must be deleted

(defun print- datum (datum st ignore)
(format st "Datum;~a" (datum-fact datum)))

(defun show-datums (datums)
(dolist (datum datums)
(format t "~% ")
(format t "~%Datum: ~A ~%Assumption: ~A "
(datum-fact datum)
(datum-assumption? datum))
(format t "~%Alpha-list :~a" (datum-alpha-list datumy))
(format t "~%]Justs:~a" (DATUM-justs DATUM))
(format t "~%Consequences.~a"(DATUM-consequences DATUM))
(format t "~%label :~a" (datum-label datum))
(format t "~%Deleted :~a" (datum-del datum))

(read)))

(defstruct (just (:print-function print-just))
(informant nil}
(consequence nil)
(antecedents nil)}

(defun print-full-just (justs)

(dolist (just justs)
(format t "~%]Informant:~a" (just-informant just))
(format t "~%Antecedents:~a" (just-antecedents just))
(format t "~%Consequence:~a" (just-consequence just))))

(defun print-just (just stream ignore)
(format t "~%just-~a" (just-informant just}))
(format t "~%antecednts:~a" (just-antecedents just)}
(format t "~%Consequence:~a" (just-consequence just)))

,,,ENV structure and print function

(defstruct (env (:print-function print-env})
(assumptions nil) ;;; Those (single) datums in the environment
(datums nil)) ;;; A List of all datums have this environment

{(defun print-env (env stream ignore)
(format t "env-~a" (env-assumptions env))}

(defun print-full-env (envs)
(dolist {env envs)
(format t "~%Assumptions;~a" (env-assumptions env))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

173

(format t "~%datums:~a" (env-datums env))))

.. CREATE ALL THE STRUCTURE
5 1- ATMS
i 2~ Datums and CONTRADICTION Datums
i 3- Environment and EMPTY-ENV |
(defun create-atms (title)
(setq *atms* (make-atms :TITLE title))
(create-contradiction-datum)
(create-empty-env)
atms) -

.o Input (1 (fact)) -- this is a tuple? (not a compound tuple)
i .asn ;weather it's assumption or not
> Note :The datum must not exist previously .
;;; Operation :create datum and process it is label
e Output :Datum
(defun create-datum (wme asn)
(setq datum (make-datum
fact (list wme)
-assumption? asn})
(when asn
(setq e (create-env (list datum)))
(push e (datum-label datumy})
(push datum (env-datums e)))

datum)

3x

(defun create-contradiction-datum ()
(setf (atms-contra-datum *atms*)
(make-datum :fact '(1 (FALSE)))))

;; This datum is used only to justify the contradiction rules

(defun create-empty-env {)
(setf (atms-empty-env *atms*) (create-env nil)))

- Input :Assumption envolved in the environment

;;; Output :if the environment is exist previously return it
i else create a new one
(defun create-env (assumptions &aux €)
(setq e (make-env :ASSUMPTIONS assumptions))
(setq exist (lookup-env e (atms-good-env * Atms*)))
(unless (or exist (nogood? e))
(setf (atms-good-env *Atms*) (cons e (atms-good-env *Atms*))))

(if exist exist e})

;;:Look for an environment in a list of environment

(defun lookup-env (e env-list)
(dolist (env env-list)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

174

(when (equal-env? env e) (return-from lookup-env env)))
nil)

Two Environment arc equal when the assumption in el is subbset in e2
., and vice versa
(defun equal-env? (el e2)
(and (subsetp (env-assumptions eZ)(env assumptions el))
(subsetp (env-assumptions el)(env-assumptions €2))))

)”

.;; HELPING FUNCTION
;:: Check if there exist an environment in the <env-list> Subset of <env>.
(defun env-subsumed-by (env env-list)
(dolist (old-env env-list)
(when (subsetp (env-assumptions oid-env) (env-assumptions env))
(return old-env)))) '

(defun compare-env (el €2)
(cond ((equal-env? e2 el) :EQ)
({subset-env? el e2) :512)
((subset-env? €2 el) :521)

(t NEQ)))

(defun subset-env? (el e2)
(if (subsetp (env-assumptions el) (env-assumptions e2)) t nil))

::: return the union of two environment
;- if the union exist previously return it
(defun union-env (el e2)
{create-env
(union (env—assumptlons el) (env-assumptions €2))))

;;; Envs :new env come to the just from antecedent
(defun find-new-envs (antecedent envs antecedents &aux new-envs)
(incf lcomp)
(drop-nogood
(make-minimal
(find-sound-complete-envs antecedent envs antecedents))))

- Return all the env. result from combine the environments of
... the antecedents
(defun find-sound-complete-envs (antecedent envs antecedents)
(dolist (datum antecedents)
(unless (eq datum antecedent) ;; in order to process only the new environment
(setq result nil)
(dolist (env envs)
(dolist (datum-env (datum-label datum))
(setq result (cons (union-env env datum-env) resuit))))
(setq envs result))) '
envs)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

175

..: No env. is subset of another
(defun make-minimal (env-list &aux (result nil))
(setq temp-list (copy-list env-list))
(dolist (env env-list)
(setq temp-list (delete env temp-list :count 1))
(unless (env-subsumed-by env temp-list)
(setq result (cons env result)))
(setq temp-list (cons env temp-list)))

result)

.- delete all nogood environment
(defun drop-nogood (env-list &aux (result nil))
(setq temp-list (copy-list (atms-nogood-env *atms*)))
(dolist (env env-list) '
(unless (env-subsumed-by env temp-list)
(setq result (cons env resuit))))

result)

' Input :new-environments and the consequent of the justification
. operation :update the label of the consequence and return the new env
. not exist in the old
{defun whose-still-new (new-env datum)
(setq old-env (datum-label datum))
(dolist (nenv new-env)
(dolist {oenv old-env)
(case (compare-env nenv oenv)
(:S12 (setf (env-datums oenv)
(delete datum (env-datums oenv):count 1))
(setf (datum-label datum)
(delete oenv (datum-fabel datum):count 1)))
((EQ :S21) (setf new-env
(delete nenv new-env .count 1))))))
(dolist (nenv new-env)
(push datum (env-daiums nenv))
(push nenv {datum-label datum)))
new-env) '

;»; Input : an environment
;;; Output : return true if the environment is nogood
(defun nogood? (env)
(cond
;if it exist prev
((lookup-env env (atms-nogood-env *atms*)) t)
.:if there exist e subset of env
((env-subsumed-by env (atms-nogood-env *atms*)) t)
;; else return nil

(t nil}))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

176

(defun new-nogood (cenv)
(setf (atms-nogood-env *atms*)
(cons cenv (atms-nogood-env *atms*)}))
(remove-env-from-labels cenv t)
(setf (env-datums cenv) nil)
(dolist (env (atms-good-env *atms*))
(when (subset-env? cznv env)

(remove-env-from-labels env)

(setf (env-datums env) nil)

(setf (atms-good-env *atms*)

(delete env {atms-good-env *atms*) :COUNT 1))))
(setf (atms-nogood-env *atms*)
(make-minimal (atms-nogood-env *atms*})))

{defun remove-env-from-labels (env &optional (first nil))
(dolist (datum (env-datums env))
(setf (datum-label datum)
(delete env (datum-label datum) :COUNT 1))
(unless (datum-label datum)
(when first
(push datum *visited-datums*}))))

(defun eq-just (j1 j2)
(and (equal (just-informant j1)(just-informant j2))
(equal (just-antecedents j1)(just-antecedents j2))
(equal (just-consequence j1)(just-consequence j2})))

(defun justify-DATUM (informant consequence antecedents &aux just)
(setq just (make-just
INFORMANT informant
‘CONSEQUENCE consequence
: ANTECEDZNTS antecedents))

(unless (member just (DATUM-justs consequence) :test #'eg-just)
(push just (DATUM-justs consequence))
{dolist (DATUM antecedents) (push just (DATUM-consequences DATUM)))
(return-from justify-DATUM t)) .

nil)

(defun justify-inst (informant consequence antecedents &aux just)
(setq just (make-just ' '
-informant informant
‘CONSEQUENCE consequence
-ANTECEDENTS antecedents))
(dolist (datum antecedents) (push just (datum-conserjuences datum))))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Appendix 4

Hindi System Program

4.1 Rete.lsp
the same as before

4.2 Def.lsp

;;; Hindi System

::: Declaration Part

- 1- SPECIAL VARIABLES .
;o 2- STRUCTURE USED .

- 3. PRINT FUNCTION .
(IN-PACKAGE :HRETE)

::» RETE Production System
(defvar *REPS* nil)
(defvar *rule*)

(defvar *RETE* nil)

(defstruct (reps (PREDICATE reps?)
(:PRINT-FUNCTION print-reps))

(title nil)

(atms nil) : Assumption beased truth maintenance system
(rete nil) ‘RETE network .
(alpha nil) :Memory-node where all datum are stored there
(derived nil) ‘Datums that have no alpha are stored here
(conflict-set nil) ;Conflict-set (instantiated rules)

{(queue nil)) :Queue used conflict Resolution.

(defun print-reps (reps st ignore)
(format st "REPS:~A" (reps-title reps)))

(defun show-reps ()

(format t "~%Title:~a" (reps-title *reps*))
(format t "~%Atms:~a" (reps-atms *reps*))
(format t "~%RETE:~a" (reps-rete *reps*))
(format t "~%QUEUE:~a" (reps-queue *reps*))

(format t "~%To show full atms Echo (print-full-atms)”)
(format t "~%To show All Data Echo (show-Data)")
(format t "~%To show Conflict-set Echo (show-conflict-set)"))

. INSTANCE STRUCTURE

ELH

. Print Functions

an

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

178

.., SHOW CONFLICT SET.

(defstruct (instance (PREDICATE instance?)
(:PRINT-FUNCTION print-instance))

(rule-name nil)

(contradiction nil) ;;weather its contradiction or not.

(consequence nif) ;;un-instantiated consequence

(vars nil) ;;variable in consequence

(antecedents nil) ;;list of antecedents datums

(label nil) ;;label of the antecedents

(del nil) -:tag used to detect the datum tha must be deleted

(binding nil)) ;;assostation list with variable binding

(defun print-instance (inst st ignore)
(format st "~%Instance:-")
(format st "~%Rule:~a" (instance-rule-name inst))
(format st "~%Contradiction:~a" (instance-contradiction inst))
(format st “"~%Consequence:~a" (instance-consequence inst))
(format st "~%Vars:~a" (instance-vars inst))
(format st "~%Antecedents:~a" (instance-antécedents inst))
(format st "~%Labels:~a" (instance-label inst}))
(format st "~%Deleted :~a" (instance-del inst})
(format st "~%Binding:~a" (instance-binding inst)))

(defun show-conflict-set (&optional (conflict-set (reps-<onflict-set *reps*)))
(dolist (instance conflict-set)
(print-instance instance t nil)))

:; Temprory structure used in rete buiider
(defstruct (Rule) ;temp rule

(name nil}

(lhs nil)

(test nil}

(rhs nil)

(flds nil)

(vars nil)

(contradiction nil))

. RETE NETWORK

2y

.- Print Functions

m

(defstruct (RETE (:PREDICATE rete?)
(:PRINT-FUNCTION print-rete)} ;;; ROOT NODE
(title 'Rete-nets) ; ‘
(type-checking nil)) - Nodes to Check the predicate name

(defun print-rete (rete st ignore)
(format st "RETE:~A" (rete-title rete)))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

179

(defun show-rete ()
(format t "~%Title:~a" (rete-title *rete*))
(format t "~%Type checking Nodes:~a" (rete-type-checking *rete*)))

:»;Type Checking Nodes

(defstruct (Tcheck-node (:PREDICATE tcheck-node?)
(:PRINT-FUNCTION print-Tcheck-node))
(name nil) :: Name of the predicate
(contradiction nil) ;; weather its a part of contradiction rule.

(next-nodes nil)) ;; alpha-beta or t-const - list of nodes

(defun print-Tcheck-node (Tcheck-node st ignore)
(format st "TCHECK:~A" (Tcheck-node-name Tcheck-node)))

(defun show-Tcheck-node (&optional (Tchecks (rete-type-checking *rete*)))

(dolist (Tcheck Tchecks)
(format t "~%Name:~a" (Tcheck-node-name Tcheck))
(format t "~%Contradiction:~a" (Tcheck-node-contradiction Tcheck))
(format t "~%Next Nodes:~a" (Tcheck-node-next-nodes Tcheck))))

.3:; T-const nodes
(defstruct (T-const-node (PREDICATE t-const-node?)
(:PRINT-FUNCTION print-T-const-node))

(id 0) . indexer

(check] nil) ;; check the constant value ((field value)...)

(check? nil) ;: check the field in one predicate ({(field field)...)

(check3 nil) . intra-test-function name

(contradiction nil) ;; weather its a part of contradiction rule.

(next-node nil)) ;; alpha-beta -one node

(defun print-T-const-node (t-const-node st ignore)
(format st "TC:~a" (t-const-node-id t-const-node})
(if (t-const-node-check1 t-const-node) (format st " Const-test,”))
(if (t-const-node-check? t-const-node) (format st " Equal-var,"))
(if (t-const-node-check3 t-const-node) (format st " Intra-Ext-fun,")))

(defun show-t-const-node (t-const-list)
(dolist (t-const t-const-list)

(format t "~%0ld:~a" (t-const-node-id t-const))
(format t "~%Contradiction:~a" (i-const-node-contradiction t-const))
(format t "~%Const-test:~a" (t-const-node-checkl t-const))
(format t "~%Equal-var:~a" (t-const-node-check? t-const))
(format t "~%Intra-Ext-fun:~a" (t-const-node-check3 t-const))
(format t "~%Next-node:~a" (t-const-node-next-node t-const))))

333

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

180

;;; Alph and beta memory nodes

(defstruct (alpha-beta (:PREDICATE alpha-beta?)
(:PRINT-FUNCTION print-alpha-beta))
(id 0) ; indexer
(Datums nil) ; List of facts _
(R-Ands nif) ; Right and node -list
(L-Ands nil) ; Left and node -list
(p-mem mil) ; P-mem node if it the next -list
(contradiction nil) ; weather its a part of contradiction rule.
(prev-node nil)) ; pointer to the previous node -one element

(defun print-alpha-beta (alpha-beta st ignore)
(format st "Alpha-beta:~A" (alpha-beta-id alpha-beta)))

(defun show-alpha-beta (mem-list)
(dolist (mem mem-list)

(setfin-d (E-in (alpha-beta-datums mem)))
(setf out-d (E-out (alpha-beta-datums mem)))
(format t "~%Id:~a" (alpha-beta-id mem))
(format t "~%Contradiction:~a" (alpha-beta-contradiction mem))
(format t "~%R-Ands:~a" (alpha-beta-R-ands mem))
(format t "~%L-Ands:~a" (alpha-beta-L-ands mem))
(format t "~%P-mems:~a" (alpha-beta-p-mem mem))
(format t "~%Prev-node :~a" (alpha-beta-prev-node mem))
(format t "~%In-Datums:~a" in-d)
(format t "~%No of In datums :~a" (length in-d))
(format t "~%Out-Datums:~a" out-d)
(format t "~%No of out datums :~a" (length out-d))

(read)))

;:Extract the in-datums
(defun E-in (datums &aux (result nil))
(dolist (d datums)
(when (is-in d) (push d result))) .
result) _
. Extract the out-datums
(defin E-out (datums &aux (result nil))
(dolist {d datums})
(when (is-out d) (push d result)))

result)

", AND nodes
’(:lefsmct (AND-node (PREDICATE and-node?)
(:PRINT-FUNCTION print-and.node))
(id 0) ;; indexer

(checkl nil) ;; check the var between predicates ((fld2 ind fld2 ind)..)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

181

(contradiction nil) ;; weather its a part of contradiction rule.

(L-mem nil) - Left Memory Nodes -one element
(R-mem ni}) ;; Right Memory Nodes -one element
(O-mem nil}) .- Qutput Memory Nodes -one element

(defun print-and-node (and-node st igno.re)
(format st "And:~A" (and-node-id and-node)))

(defun show-and-node (and-list)
(dolist (and-node and-list)

(format t "~%ld:~a" (and-node-id and-node))
(format t "~%Contradiction:~a" (and-node-contradiction and-node))
(format t "~%Eq-var:~a" (and-node-check1 and-node))

(format t "~%Left mem :~a" (and-node-L-mem and-node))
(format t "~%Right mem :~a" (and-node-R-mem and-node))
(format t "~%Output mem :~a" (and-node-O-mem and-node})))

13

- P-memory nodes

(defstruct (P-mem (:PREDICATE p-mem?)
(:PRINT-FUNCTION print-p-mem))

(rule-name nil) ; the name of the rule corresponding to it
(inter-test nil) ; the name of the inter test function
(consequent nil) ; the consequent of the tule (un-instantiated)
(contradiction nil), weather its contradiction or not.
(var-loc nil) ; ((7x fld index)...)
(datums nil)) ; justification tuple that can instantiate the rule

(defun print-p-mem (p-mem st ignore}
(format st "P-mem :~A" (p-mem-rule-name p-mem)))

(defun show-p-mem (p-mem-list)
(dolist (p-mem p-mem-list)

(format t "~%Rule Name :~a" (p-mem-rule-name p-riem)) .
(format t "~%Contradiction:~a" (p-mem-contradiction p-mem))
(format t "~%Test Name :~a" (p-mem-inter-test p-memy))
(format t "~%Consequent:~a" (p-mem-consequent p-mem))
(format t "~%Var-loc :~a" (p-mem-var-loc p-mem))
(format t "~%datums :~a" (p-mem-datums p-mem))
(format t "~%# J-datums :~a" (length (p-mem-datums p-mem)))))

4.3 build.Isp

... Hindi System

(in-package ‘HRETE)

;1» Special variable declsration

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

182

(defvar *dir* 'r) ; special variable to determine the direction of build rete net
(defvar *r-env* nil) ; place to hold the binding from right

(defvar *l-env* nil) ; place to hold the binding from left

(defvar *mem-id* 0) ; Counter for alnha-node

(defvar *con-id* 0) ; Counter for t-const-node

(defvar *and-id* 0) ; Counter for and-node

(setf *con-id* 0)

(setf *and-id* 0)

(setf *mem-id* 0)

;;:Variable Needed for debug and tree traverse
(defvar *tc* nil)(setf *tc* nil)

(defvar *tch* nil)(setf *ich* nil)

(defvar *al* nil)(setf *al* nil}

(defvar *ad* nil)(setf *ad* nil)

(defvar *p* nil)(setf *p* ni)

oo ok ok ok ke ok ok ok ot ok e ok ok ok ok o ok ok e ok ke ok kR o

13

;»; Main function
;1 *rule*-test is a test over all predicate

(defun create-rete ()
(setf *r-env* nil)(setf *l-env* nil)(setf *dir* 'r)
(create-p-mem (process-antecedents (decompose-ants))))

.;; Decompose each antecedent into a antecedent and « test
;s Input: ((pl .):test #f (p2 ..)) '
;» Output: (((p1 ..) #D ((p2 ..) nil))

(defun decompose-ants (&optional (Ihs (rule-lhs *rule*)) &aux nihs)
(do ((ants Ihs (rest ants))
(nlhs nif))
((endp ants) (reverse nlhs}))
(cond ({and (listp (first ants)) (eq (second ants) :test))
(push (list (first ants) (third ants)) nihs)
(setf ants (rest(rest ants)))),
(t (push (list (first ants) nil) nlhs)))})

- Main function in build a rete for each rule

333

;5 Input : ((p1 ..} #) ((p2) nil)) .
., Output: alpha-beta Memory Node .
(defun process-antecedents (lhs)
(cond ((endp 1hs) nil)
(t (anded (process-antecedents (rest lhs))
(process (first Ths)))

- Process one antecedent and create type-checking ,t-const node,alpha-beta

a2

5 Input :((pl ..) #)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

133

::: Output: alpha-beta Memory Node .
(defun process (ant)
(updatel-l-r-env ant) ,; update r-env,l-env
(setf check1 (compute-check] ant)) ;; constant check
(setf check2 (compute-check?2 ant}) ;; var equality
(setf check3 (second ant)) ;; function name
~If there is a test create t-const else create type-check-node only
(if (or check1 check2 check3)
(alpha (t-const check] check2 check3 (type-check ant))}
(alpha (type-check ant))))

;;; Update the r-env ,l-env according to the new pattern
;» Input :((p1 ..) #1) ,*dir*
;;; Output :((fld1 var index))

(defun updatel-i-r-env (ant)
(cond ((eq *dir* 'r)
(setf *dir*)
(setf *r-env* (generate-env ant)))
((eq *dir* D)
(setf *l-env* (generate-env ant)))))

;> Input :((p1 ..) #1)
;»> Output :((fld1 1 varl) ...))

(defun generate-env (ant &aux (env nil))
(do ((ant1 (first ant) (rest ant1}))
{env nil})
((endp antl) {reverse env))
(when (and (field? (first ant1})) (variable? (second ant1)))
(push *(,(first ant1) 1 ,(second ant1)) env))))

;;; Check the constant field in a predicate

. Input ((pl ..) #5)
;;; OQutput :((fld val)...)

(defun compute-checkl (ant &aux (env nil})
(do ({antl (first ant) (rest ant1))
(env nil))
((endp antl) (reverse env))
(when (and (field? (first ant1)) (not (variable? (second ant1))))
(push "(,(first ant1) ,(second ant1)) env))}))

;;; Check if two or more variable are equal
”) Inpl‘It ‘((pl ") #f)
5, Output :(fld1 1d2)

(defun compute-check? (ant &aux (env nil))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

184

(do ((ant! (first ant) (rest antl)})
(env nil))
((endp antl) (reverse env))
{when (field? (first ant1))
(setf fld (first ant1))
(setf var (second antl1})) :
(do ((rem (rest(rest ant1)) (rest rem))}
{((endp rem))
{when (and (field? (first rem)) (eq (second rem) var))
(push "(,fld ,(first rem}) env)

(return t))))))

.. Create type checking node , If it exist return it

5 Input :((pl..) #)
.; Output :Type Checking node

defun type-check (ant
yp
(setf tch (lookfor-tch ant))
(if tch tch (create-type-checking ant)))

;;; Create alpha-mem node and assosiate it with the node
;»» Input : type-checking node or t-const or and node
;;; Qutput : Alpha-beta memory-node

.; (when (rule-contradiction *rule*)
., (setf (alpha-beta-contradiction (t-const-node-next-node node)) t))

(defun alpha (node)
(cond

{(tcheck-node? node)
.+ if it exist return it else create a new one
(lookfor-alpha-beta node))

((and (t-const-node? node)
(alpha-beta? (t-const-node-next-node node)))
(t-const-node-next-node node))

((t-const-node? node)
(setf *mem-id* (1+ *mem-id*))
(setf (t-const-node-next-node node)

(make-alpha-beta :id *mem-id* :prev-node node
-contradiction (rule-contradiction *rule*)))

(push (t-const-node-next-node node) *al*) ;;==>test
(push (t-const-node-next-node node) (reps-alpha *reps*))
{t-const-node-next-node node))

((and (and-node? node) (and-node-0-mem node))
(and-node-o-mem node))

{((and-node? node)
(setf *mem-id* {1+ *mem-id*))
(setf (and-node-o-mem node)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

183

(make-alpha-beta :id *mem-id* :prev-node node
-contradiction (rule-contradiction *rule¥})))
(push (and-node-o-mem node) *al*) ;;;==>test
(and-node-o-mem node))))

- look if one of the node is a mem node ;; assosiated with type-checking
(defun lookfor-alpha-beta (tcheck-node)
(dolist (node (tcheck-node-next-nodes tcheck-node))
(when (alpha-beta? node)
(return-from lookfor-alpha-beta node)))
(create-alpha-beta tcheck-node})

;;; create memory node

EES]

;>; join it to the previous node

(defun create-alpha-beta (tcheck-node)
(setf *mem-id* (1+ *mem-id*})
(setf ab (make-alpha-beta :id *mem-id* :prev-node tcheck-node
:contradiction (rule-contradiction *rule*)))
(push ab *al*) ;;;test ==>
(setf (tcheck-node-next-nodes tcheck-node)
(Rpush ab (tcheck-node-next-nodes tcheck-node)))
(push ab (reps-alpha *reps*}))
ab)

=+ Look if a type-checkicg node for the ant exist previosly
(defun lookfor-tch (ant)
(setf p-name (first(first ant)))
(dolist (tch (rete-type-checking *rete*))
(when (eq p-name (tcheck-node-name tch))
(return-from lookfor-tch tch))))

. Create a type checking structure and return it

kL E

;;; and join it to the root

(defun create-type-checking (ant)

(setf tc (make-tcheck-node :name (first(first ant})
-contradiction (rule-contradiction *rule*}))

(push tc *tch*) ;;;=> '

(push tc (rete-type-checking *rete*))

tc)

.;» if there exist t-const return it else create a t-const node
" (defun t-const (check1 check2 check3 tcheck-node)

(setf t-const-node (lookfor-t-const check1 check2 check3 tcheck-node))
(if t-const-node _

t-const-node

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

136

:» to make closure around the function
(eval “(create-t-const ‘,checkl ',check2 ,check3 'tcheck-node))))

.- Look if a t-const node for the type-checking node. is exist previosly
. must have the same condition
(defun lookfor-t-const (ck1 ck2 ck3 tcheck-node)
(dolist (node (tcheck-node-next-nodes tcheck-node))
(when (and (t-const-node? node)
(t-const-equal? node ck1 ck2 ck3))
(return-from lookfor-t-const node))))

- create t-const node structure and return it

an

;;; join it to the previous type-checking node

(defun create-t-const (ck1 ck2 ck3 tcheck-node)
(setf *con-id* (1+ *con-id*))
(setf tc (make-t-const-node
id *con-id¥
-contradiction (rule-contradiction *rule*)
:checkl ckl
:check2 ck2
:check3 ck3))
(setf (tcheck-node-next-nodes tcheck-node)
(Rpush tc (tcheck-node-next-nodes tcheck-node)))
(push tc *tc*) ;,;=>
tc)

::» check if the tests are in this t-const-node or not
(defun t-const-equal? (node ck1 ck2 ck3)

(and

(equal (t-const-node-check3 node) ck3)
(equal-ck (t-const-node-check2 node) ck2)

(equal-ck (t-const-node-checkl node) ck1)))

(defun equal-ck {ckl ck2)
(unless (= (length ck1) (length ck2)) (return-from equal-ck nil))
(dolist (item ckl)
(unless (member item ck2 :test #'equal) (return-from equal-ck nil)})

t)

- Main function to join between antecedents

237

::: Create and-node , p memory node
. Input :two alpha-beta nodes
;»» Output :one alpha-beta
(defun anded (r-mem |-mem)
(if (nu!! r-mem) (return-from anded 1-memy))
(setf inter-test (update2-l-r-env)) ;; update r-env,l-env,dir,compute inter-test
(setf Out-mem-and-node (lookfor-and-node inter-test I-mem r-memy))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

187

(if Out-mem-and-node
Out-mem-and-node
(alpha(create-and-node inter-test [-mem r-mem))))

= Input *r-env* *l-env* *dir*

::; Output *r-env* after put l-env at the begining of the r-env
and increment the index of the old *r-env*

and return the inter-test

”,

LER

{defun update2-l-r-env (&aux (nrenv nil)}
(dolist (renv *r-env*)
(push *(,(first renv) ,(1+ (second renv)) ,(third renv)) nrenv))
(setf nrenv (reverse nrenv))
(setf inter-test (compute-inter-test *l-env* nreav))
(dolist (lenv *1-env*)(push lenv nrenv))
(setf *r-env* nrenv)
(setf *l-env* nil)
inter-test)

-:Compute the inter test between the right and the left env
»Input : R-env L-env
,,,Output Test
(deﬁm compute-inter-test (I-env r-env &aux (test nil))
(dolist (L l-env)
(setf lvar (third L))
(dolist (R r-env)
(setf rvar (third R))
(when (eq lvar rvar)
(push ‘(,(first) (second 1) ,(first R) ,(second R)) test))))
test)

- create and-node and join it to the mem-nodes
(defun create-and-node (test 1 1)
(setf *and-id* (1+ *and-id*))
(setf and-node (make-and-node
:id *and-id*
-contradiction (rule-contradiction *rule*)
.check] test
l-mem |
‘T-mem r))
{(push and-node *ad*) ;;;=>
(setf (alpha-beta-r-ands r)
(Rpush and-node (alpha-beta-r-ands r)))
(setf (alpha-beta-l-ands 1)
(Rpush and-node (alpha-beta-l-ands 1)))
and-node)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

188

- ook if there exist a previously created and node
., if yes return the output mem

))’

¥

(defun lookfor-and-node (test I 1)
(dolist (left-and (alpha-beta-l-ands 1))
(when (and (member left-and (alpha-beta-r-ands r) :test #'eq)
(equal-and? left-and test)))
(return-from lookfor-and-node (and-node-o-mem left-and)))})

(defun equal-and? (anode test)
(unless (= (length test) (length (and-node-checkl anode)))
(return-from equal-and? nil))
(dolist (item (and-node-checkl anode))
(unless (member item test :test #equal) (return-from equal-and? nit)))

t)

:: After finish build a rete nets for a rule you need to create a p_mem
- for this rule and assosiate it to the last node
- if there is a test in whole rule you must process this test
;; Input :alpha-beta
o Output p-mem
(defun create-p-mem (node &optional (inter-test-fun (rule-test *rule*)))
(eval *(setf p (make-p-mem
‘rule-name ' (rule-name *rule*)
-contradiction ,(rule-contradiction *rule*)
‘inter-test ,inter-test-fun
.consequent ', (rule-rhs *rule¥)
-var-lo¢ ',(compute-var-loc))))
(push p *p*) ;;;==>
(SETF (alpha-beta-p-mem node)
(rpush p (alpha-beta-p-mem node)))

’)’
333

LR

p)

- find the var loc using the *r-env* and vars in *rule*
.o Output : ((7x fld index)....)

’})

3

(defun compute-var-loc (&aux (loc nil))
(dolist (var (rule-vars *rule*)) ,
(dolist (binding *r-env*)
(when (eq (third binding) var)
(push "(,var ,(first binding) ,(second binding)) loc})
(return t))))

loc)

;:Input :item ,node list .
--Operation :insert the item in the node list at the begining if its
‘belong to the contradiction node
-else at the end

”)
bR]
LEE]

M

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

189

: This help in reasoning : by give the contradiction more priority
.;; Over the normal rule
(defun Rpush (item niode-list)
(when (rule-contradiction *rule*)
(setf node-list (append (list item) node-list)))
(unless (rule-contradiction *rule*) . .
(setf node-list (append node-list (list itemn))))
node-list)

”!

4.4 Reason.lsp
- Rete Reasoning System Coupled With Atms (tight coupling)
(in-package :Hrete)
(defvar inst-under-exe nil)
(defvar *visited-datums*) ; list to store all the datums that must be
(setf *visited-datums* nil) ; traveresed by the rete to push out the empty
; label datums
(defvar cun‘ent-nme 1) ;the time needed in t;me stamp
(setf current-time 1) i
(defun start-reasoning (&aux (repeat t))
(loop
(unless repeat
(format t " %****#***********************1 ******#*************")
(format t "~%Reasoning terminated")
(format t "~%To look for the data use - show-data ")
(format t "~%To look for a specific data use - rfetch (..} *)

(format t "~%Join operation =~a" Joperation)
(format t "~%Rule instantiated =~a" instrule)
(format t "~%Execute Normal Rule =~3" ERule)
(format t "~%Execute Contradiction Rule =~a" ECRule)
(format t "~%Label Computation =~a" Lcomp)
(format t " %******'k*.*****#*****************#*****************")
(return))
.;Find all applicable ruls and store the instances in the conflict set
(Ioop

(setf wme (pop (reps-queue *reps*)))
(when (null wme) (return))
(process-wme wme))
;:Contradiction rule is fired as soon as they are instantiated
;;which is mean that those rule is not stored in conflict set
;:Loop until a new datum is inserted or no instant in conflict set
(setf repeat nil)
(loop
(setf inst (simple-resolve-conflicts)) :
(when (null inst) (return)) ; Empty conflict-set: finish resolution.
(when (act inst) ;; When the act insert a new datum in queue process it.
(incf erule)
(setf repeat t)

(return)))))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

190

;: Input :contradiction inst

;;; Operation : act contradiction rule
(defun act-contradiction-rule {inst)
(incf ecrule)
(act inst)

(filter-rete *visited-datums*))

> You can put here any creteria you want

33r

.- T use a simple strategy (the last in first out)

ERE

.- the instance must be in (in-part) of the mem node

(defun simple-resolve-conflicts ()

(loop
(setf inst {pop (reps-conflict-set *reps*))}
(unless inst (return-from simple-resolve-conflicts nit))
(when (is-inst-in inst) (return})))

(setf (instance-label inst)

(The-label-of (first(instance-antecedents inst))))
inst)

;; Input ;Datum

1

- Insert any completly instantiated rule in conflict set.
(defun process-wme (wme)
- Check the existence of the single tuple
(setf d (is-exist? (first(datum-fact wme))))
., 1- if it exist previously then
(whend
;;;1.1- if the datum d in the in-part of the memory
{when (is-in d)
;; justify the tuple
(when (datum-justs wme)
(setf (just-consequence (first(datum-justs wme))) d))
- compute the new label for d and find if there is a new env remain
(setq new-envs (whose-still-new (datum-label wme) d))
:if there is a new environmets
(when new-envs ;;insert=no,join=no
(setf (datum-jtime d) 0)
(process-tcheck d nil})
(return-from process-wme nil))
::1.2 if the datum d in the out-part of the memory
(when (is-out d)
.- if the datum have new label
(when (datum-label wme)
;> move d in the in-part
(setf d {push-in d (datum-stime d)(datum-stime d})))
(setf (datum-label d) (datum-label wme))
(dolist (env (datum-label d)) (push d (env-datums env)))
; justify the tuple
(when (datum-justs wme)
(setf (just-consequence (first(datum-justs wme))) d))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit.. .

191

(process-tcheck d nil))
(return-from process-wme nil)))
:::2- not exist previously (New)
(unless d
(unless (datum-assumption? wme) (dolist (env (datum-label wme)) (push wme (env-
datums env))))
(push wme (atms-datums *atms*))
-2 1 if the label is empty store the datum in the out-part with -1 as time-stamp
(unless (datum-label wme) :
(setf wme (push-out wme -1 0))
(process-tcheck wme t)
(return-from process-wme nil))
=2 72 if the label is not empty store the datum in the in-part with current as time-stamp

I

(when (datum-label wme)
(setf wme (push-in wme current-time -1))
(process-tcheck wme t}))))

.-input :the single tuple , flag used to insert or not insert the tuple
(defun process-tcheck (wme ins)
(setf tch (find-tcheck (get-pred-name wme)))
(unless tch :; No type checking for this predicate
(when ins (push wme (reps-derived *reps*)))
(return-from process-TCHECK t))
- Find all next-node of the correspond type-check node
(setf next-nodes (tcheck-node-next-nodes tch)) ;;Next node :alpha or t-const
(dolist (node next-nodes)
(when (alpha-beta? node)
(when ins
(push wme (alpha-beta-datums node))
:Regist the alpha in wme
(push node (datum-alpha-list wme)))
(process-alpha node (list wme}))
(when (t-const-node? node)
(when (and
ns
(process-check] node wme)
(process-check2 node wme)
(process-check3 node wme))
(push wme (alpha-beta-datums (t-const-node-next-node node)))
;Regist the alpha in wme
(push (t-const-node-next-node node)(datum-alpha-list wme})
(process-alpha (t-const-node-next-node node) (list wme}))
(when (and (not ins)
(member (t-const-node-next-node node) (datum-alpha-list wme)))
(process-alpha (t-const-node-next-node node) (list wme)))

D)

.. Input : Predicate name
;.. Output : type checking node

1

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

192

(defun find-tcheck (p-naine)
(dolist (tch (rete-type-checking *rete*}))
(when (eq p-name (tcheck-node-name tch))
(return-from find-tcheck tch)))
nil)

;;; Input : t-const-node , datum

:; Output : t, nil

.- Check the constant values ((fld value)(fld value))
. Datum here is a single tuple.

(defun process-check] (t-const datum)

(dolist (check (t-const-node-check] t-const))

(unless (eq (fld-value (first check) 1 datum) (second check))

(return-from process-check1 nil)))

t)

;;; Input : t-const-node , datum

;5 Output : £, nil

.- Check the fields equality ((fld1 fld2)(fld4 f1d5)...)

. Datum here is a single tuple.

(defun process-check?2 (t-const datum)

(dolist (check (t-const-node-check?2 t-const))
(unless (eq (fld-value (first check) 1 datum)
(fld-value (second check) 1 datum))

(return-from process-check2 nil)))

B

;;; Input : t-const-node , datum
o Qutput @ ¢, nil
-+ Check the test function ((fld1 fld2)(fld4 fld5)...)
:»» Datum here is a single tuple.
(defun process-check3 (t-const datum)
(unless (t-const-node-check3 t-const)
(return-from process-check3 t))
(setf tuple (second(first(datum-fact datum))))
(setf flds (reverse(extract-flds (list tuple))))
(apply (t-const-node-check3 t-const)
(mapcar #(lambda (fld)
(fid-value fld 1 datum))
flds)))

;;; Input : The Field name, Index ,datum
;;; Output : The value of the field; if it exist
(defun fld-value (fld index datum)

(setf tuples (datum-fact datum))

(dolist (tuple tuples)

(when (= (first tuple) index)
(do ((pattern (second tuple) (rest pattern)))
({nul pattern) nil}

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

193

(when (eq (first pattern) fld)
(return-from fld-value (second pattern)))))))

.:Input : List of New Datums ,time used in join operation

;;:Process 1- P-mem first (if this belong to cont-rule then fire it)
2- process contradiction left-and .

3- process contradiction right-and

4- process normal left-and

5- process normal right-and

EER
bEL)
ERE

333

(defun process-alpha (alpha new-datums)
(process-p-mem alpha new-datums)
(process-1-and alpha new-datums t) ;Contradiction
(process-r-and alpha new-datums t) ;Contradiction
(process-l-and alpha new-datums nil) ;Normal
(process-r-and alpha new-datums nil) ;Normal

)

- Join the new datums with fact stored in the right mem of the left and

ary

- Process the out memory of the and-node

Ay

I

(defun process-l-and (alpha new-datums cont)
* (setf lands (alpha-beta-l-ands alpha))
(dolist (land lands)
(when (equal (and-node-contradiction land) cont)
- the following condition is used to prevent repeat vwork

31

.-+ when the | and r mem for node AND node is the same and is

1

- traversed only in the right direction

(unless (equal (and-node-r-mem land) (and-node-l-mem land))
(setf new-joind-tuples '
(ljoin new-datums (alpha-beta-datums (and-node-r-mem land))
(and-node-o-mem land) {and-node-checkl land)))
- any new tuple is inserted in the out mem

1

- the old tuple is used to update the label

(when new-joind-tuples
(process-alpha (and-node-o-mem land} new-joind-tuples))))))

-+ Join the new datums with fact stored in the right mem of the right and

313

.. Process the out memory of the and-node
(defun process-r-and (alpha new-datums cont)

(setf rands (alpha-beta-r-ands alpha))

(dolist (rand rands)

(when (equal {and-node-contradiction rand) cont)

(setf new-joind-tuples
(rjoin (alpha-beta-datums (and-node-l-mem rand)) new-datums
(and-node-o-mem rand) (and-node-checkl rand) b))

- any new tuple is inserted in the out mem

s

- the old tuple is used to update the label

EEE]

(when new-joind-tuples

.. cont : to determine weather you want to process contradiction and or not

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

194

(process-alpha (and-node-o-mem Rand) new-joind-tuples)))))

. Check each new datums with inter-test function (if it exist)

EED

;;; Store the good one in the conflict set
;; If the p-mem belong to contradiction rule then do not store it
;o in the conflict set instead fire it
;. according to hindi system you must deal with infout instance
(defun process-p-mem (alpha new-datums)
(unless (alpha-beta-p-mem alpha)(return-from process-p-mem t})
(setf p-mems (alpha-beta-p-mem alpha))
(dolist (p-mem p-mems)
(dolist (datum new-datums)
(when (is-in datum)
(cond ((member datum (p-mem-datums p-mem))
(setf inst (is-inst-exist-prev? datum (p-mem-rule-name p-memy)))
(when (and inst (instance-del inst))
(push-inst-in inst))
(unless inst
(update-act p-mem datum)})
((process-inter-test p-mem datum)
(push datum (p-mem-datums p-memy))
(update-act p-mem datum)))

D))

;. Input :datum and rule-name
;;; Output :If an instance is exist previously.
(defun is-inst-exist-prev? (datum Rname)
(dolist (j (datum-consequences datum))
(when (and (instance? (just-consequence j))
(equal (instance-rule-name (just-consequence j)} rname})
(return-from is-inst-exist-prev? (just-consequence j))))

nil)

(defun update-act (p-mem datum)

(update-conflict-set
(p-mem-rule-name p-mem)
(p-mem-contradiction p-mem)
(p-mem-consequent p-mem)
(generate-binding p-mem datum)
(list datum))

(when (p-mem-contradiction p-mem) ;;contradiction rule
(decf instrule) ;; realy its not stored in the conflict set
(act-contradiction-rule (simple-resolve-conflicts)}))

(defun update-conflict-set (rname cont consequence binding antecedents)

(incf instrule)
(setf lambda-vars (extract-vars consequence})

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

195

(eval *(push (make-instance
‘rule-name ',rname
-contradiction ',cont
-consequence #(lambda ,lambda-vars ,@consequence)
‘binding ',binding
-antecedents ',antecedents ;;list of datums
-vars ‘,lambda-vars)

(reps-conflict-set *reps¥)))
(justify-inst 'inst (first(reps-conflict-set *reps*)) antecedents))

;o Input . p-mem datum
:» Qutput © t, nil
::» Check the inter test function if it exist
(defun process-inter-test (p-mem datuin)
(unless (p-mem-inter-test p-mem) (return-from process-inter-test t)
. {(when (p-mem-inter-test p-mem)
(setf vals (extract-vals datum))
(apply (p-mem-inter-test p-mem)

vals)))

;>; Input : Datum
;;; Output : list of variable values
(defun extract-vals (datum &aux (vals nil) (temp nil))
(dotist (tp (reverse(datum-fact datum}))
(setf temp nil}
(do ((tuple (second tp) (rest tuple)))
((null tuple) t)
(when (field? (first tuple))
(push (second tuple) temp)))
(setf vals (append (reverse temp) vals)))

vals)

;;; Input : p-mem node ,datum
::: Output : (?7x . value)(..)...)
(defun generate-binding (p-mem datum &aux (binding nil)}
(dolist (loc (p-mem-var-loc p-mem))
(push (cons (first loc)
(fid-value (second loc) (third loc) datumy))
binding))
binding)

= Input : Right and left datums , out-mem of the and-node ,test

¥y

;;; Output : A list of datums (joined tuple test)
(defun ljoin (Idatums rdatums alpha test &aux (result nil))
(dolist {Id ldatums)
{when (is-in 1d)
(dolist (rd rdatums)
(when (is-in rd)
(cond

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

196

{((=(datum-jtime 1d} 0}
(setf result (append (update-label 1d rd alpha) result)))
((=(datum-jtime 1d) -1)
(setf result (append (join 1d rd alpha test) result)))
(t
(setf result (append (join Id rd alpha test 1} result)))) 1))
result)

> Input :right and left datums , out-mem of the and-node ,test

bh bl

;;; Output : a list of datums (joined tuple test)
(defun rjoin (Idatums rdatums alpha test &aux (result nil))
(dolist (Id 1datums)
{when (is-in 1d)
(dolist (rd rdatums)
(when (is-in rd)
(cond
((=(datum-jtime rd) 0)
(setf result (append (update-label Id rd alpha) resuit)))
((=(datum-jtime rd) -1)
(setf result (append (join 1d rd alpha test) result)))
(t

(setf result (append (join Id rd alpha test 'r) reéult)))))]
result)

(defun join (Id rd alpha test &optional (dir nil) &aux (result nil))
:1- check if the joined tuple exist previously in the out mem
(setf jt (is-joined-tuple-exist-prev 1d rd alpha))

;2= if'it exist then
(when jt
:2.1 : exist and in
(when (is-in jt)

3.1 ; update the label of the old one and find the remaining env.

(setf label (have-new-env? {list Id rd)))
(setq new-envs (whose-still-new label jt))
:3.1.1 :exist ,in , new~env
(when new-envs
(setf (datum-jtime jt) 0) ;no need to do join operation
(push jt result))
(return-from join result))
;2.2 :exist and out
(when (is-out jt)
:3.2.1 :exist ,out , new-env
(setf label (have-new-env? (list 1d rd)))
(when label
;push the joined tuple in the in part
(setf (datum-label jt) label)
(dolist (env (datum-label jt)) (push jt (env-datums env)})
(setf jt (push-in jt (datum-stime jt)(datum-stime jt)})
{push jt result))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

197

(return-from join result)))

;4- if it does not exist .
(unless jt _
(when (or (and (eq dir 'r) (<= (datum-stime rd)(datum-stime Id)))
(and (eq dir ') (<= (datum-stime ld)(datum-stime rd}))
(not dir)) -
(incf joperation)
(setf updated-r (inc-index rd))
(setf joined-tuple (append (datum-fact Id) updated-r))
(setf d (make-datum :fact joined-tuple))
(when (process-andcheck d test)
:4.1 it's label is not empty
(setf label (have-new-env? (list 1d rd)))
(when label
(setf d (push-in d current-time -1))
(process-new-joined-tuple d 1d rd alpha label)
(push d result))
;4.2 it's label is empty
(unless label
(setf d (push-out d -1 0))
(process-new-joined-tuple d Id rd alpha label)
-"No need to use this datum in label update or join (push d result);;

m)

result)

(defun update-label (id rd alpha &aux (result nil})
:1- check if the joined tuple exist previously in the out mem
(setf jt (is-joined-tuple-exist-prev Id rd alpha))
:2- if it exist then
(when jt

:3- :exist and in
{when (is-in jt)
-update the label of the old one and find the remaining env.
:compute the label (inc)
(setf label (have-new-env? (list Id rd)))
(setq new-envs (whose-still-new label jt))
:3.1.1 :exist ,in, new-env
(when new-envs
(setf (datum-jtime jt) 0)
-no need to do join operation
(push jt result})) '
(return-from update-label result})
:3.2 :exist and out
(when (is-out jt)
:3.2.1 (exist ,out , new-env
(setf label (have-new-env? (list 1d rd)))
(when label
;push the joined tuple in the out part

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

198

(setf (datum-label jt) label)
(dolist (env (datum-label jt)) (push jt (env-datums env)))
(setf jt (push-in jt (datum-stime jt)(datum-stime jt)))
(push jt resuit})})
:4- if it does not exist
:No join operation is néeded here
result)

;;; Input left datum amd right datum and out-mem

;;; Output :If a joined tuple is exist previously return it
(defun is-joined-tuple-exist-prev (Id rd out-mem)
(dolist (j (datum-consequences Id))
(when (and (member out-mem (datum-alpha-list (just-consequence j)))
(or (and (eq rd (first (just-antecedents j))) '
(eq Id (second (just-antecedents j))))
(and (eq Id (first (just-antecedents j)))
(eq rd (second (just-antecedents J))))))
(return-from is-joined-tuple-exist-prev (just-consequence j))))
nil)

.., if it is not already exist do
.-+ 1- establish the links between right and left datums with joined tuple
;. 2- build a just without recompute the label
;,; 3- regist the out-mem in the joined tuple
(defun process-new-joined-tuple (d Id rd alpha label)

(justify-datum 'PT d (list 1d rd}))

(push d (alpha-beta-datums alpha))

(push alpha (datum-alpha-list d))

(setf (datum-label d) label)

(dolist (env label) (push d (env-datums env})))

(push d (atms-datums *atms*))

d)

. Input :Datums
-+ Qutput :fact in the datum after increment index

.+ increment the index in each tuple by one
(defun inc-index (datum &aux (result nil))
(setf facts (datum-fact datum))
(dolist (fact facts)
(push (list (1+ (first fact)) (second fact)) result))

(reverse resuit))

;;; Input : joined tuple , test ((fid1 index fld2 ind)(...))
;. Output : t or nil
(defun process-andcheck (d tests)
(dolist (test tests)
{unless
(eq
(fid-value (first test) (second test) d)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

199

(fld-value (third test) (fourth test) d))
(return-from process-andcheck nil)))

t)

;; Input :instance
;;; Output : t . if it insert a new data
(defun act (inst)
- to break the connection between datum and the instance
(setf justs (datum-consequences (first(instance-antecedents inst))))
(dolist (j justs)
(when (eq (just-consequence j) inst)
(setf (datum-consequences (first(instance-antecedents inst)))
(delete j (datum-consequences (first(instance-antecedents inst))))))
(setf inst-under-exe inst)
{when inst
(apply (instance-consequence inst)
(instantiate-variables (instance-vars inst)
(instance-binding inst)))))

!”

(defun instantiate-variables (consequent binding)
(sublis binding consequent))

;:Input : fact
Insert in the queue
::We have four cases :

!’)

‘}'!’

(defun assert! (fact &optional(inst inst-under-exe)
&aux datum node)
;;temp datum
(setf datum (create-datum (cons 'l (list fact)) nil))
(justify-datum 'Inferred datum (instance-antecedents inst))
(setf (datum-label datum) (datum-label (first(instance-antecedents inst))))
(push datum (reps-queue *reps*))

t)

I-Assert a new nogood
;5. 2-Justify the contradiction datum
(defun assert-nogood! (&optional(inst mst-under—exe))
(setf datum (atms-contra-datum *atms*))

(justify-datum 'Cont datum (instance-antecedents inst)}
(setf *visited-datums* nil)

(dolist (env (datum-label (first(instaice-antecedents inst))))
(new-nogood env)))

”’

’))

;.:Operation :traverse all the linked tuple and filter the rete ,
:Output :all the empty label tuple is removed to the out mem of the rete
(defun filter-rete (datums)

(dolist (d datums)(process-datum d})

Input :all the datums that become empty label because it's env become nogood

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

200

::some of the datums in reps-derived
:“become empty label and must be pushed out
(do ((d (reps-derived *reps*) (rest d)))

((null d))
(unless (datum-label (first d))

’!)

(when (is-in (first d));after remove nogood env and before push it to the out.

(setf (first d) (push-out (first d) current-time 0))
(incf current-tinie}))))

;;Input :datum
;;:Operation :traverse the alpha and links until end
(defun process-datum (d)
(unless (eq d (atms-contra-datum *atms*)}
(unless (datum-label d)
(when (is-in d) ;after remove nogood env and before push it to the out.
(setf d (push-out d current-time 0))
(incf current-time)
(do ((justs (datum-consequences d) (rest justs)))
((null justs))
(cond ((instance? (just-consequence (first justs)))
(setf (just-consequence (first justs))
(push-inst-out (just-consequence(first |usts)))))
{t (process-datum (just-consequence(first justs)}))))))))

’!’

., Input instance

.»» Operation : move the inst to the out part
{(defun push-inst-out (inst)

(setf (instance-del inst) t)

inst)

Iy

; Input :instance

;;, Operation : move the inst to the in part
(deﬁm push-inst-in (inst)

(setf (instance-del inst) nil)

inst)

”!

; Input :instance

;;; Output :return t if it in (in -mem)
(defun is-inst-in (inst)
(not(instance-del inst)}))

’”

}”

;;Input : the datum

;:Output : the label of the datum
(defun the-label-of (datum)
(datum-label datum))

;o Input . Antecedents-datums
::» Operation : compute the label.
., Output : label

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

201

(defun have-new-env? (Antecedents &aux r)
(find-new-envs nil (list (atms-empty-env *atms*)) Antecedents})

;»» Input :Datum , time stamp

- Operation : move the datum to the out part and stamp datum with time
(defun push-out (datum st jt)

(setf (datum-del datum) t)

(setf (datum-jtime datum) jt)

(setf (datum-stime datum) st}

datum)

.-, Input :Datum , time stamp

- Operation : move the datum to the in part and stamp datum with time
(defun push-in {datum st jt)

(setf (datum-del datum) nil)

(setf (datum-jtime datum) jt)

(setf (datum-stime datum) st)

datum)

;»; Input :datum
;;; Output :return t if it in (in -mem})

(defun is-in (wme)
(not(datum-del wme)))

;; Input :datum

3123

-» Output return t if it in (out -mem)

(defun is-out {(wme)
(datum-del wme))

:Copyright (c) 1986-1993 Kenneth D. Forbus, Johan de Kleer and Xerox
;Corporation. All Rights Reserved.
(defun quotize (pattern)
(cond ({(null pattern) nil)

((variable? pattern) pattern)

((not (listp pattern)) (list'QUOTE pattern))

{t *(cons ,(quotize (car pattern))

,(quotize {(cdr pattern)))))}

4.5 ATMS.Isp

:;; Hindi System

;; All definition and structure used in Atms .

;- All Function related to Atms operation.

- In This Atms the nodes and the justification are integrated with
the datums in the rete Memory node ,

while the ATMS here is used only for environment manipulation

1

Ehd

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

202

(In-package :Hrete)
(defvar *atms™ nil)
(setf *atms* nil)

. STRUCTURE

oo 1- ATMS

5o 2- ENVIRONMENT
o 3-DATUMS

5 4= Just

(defstruct (atms {:print-function print-atms))
(title nil) .
{datums nil} ;; all datums
(good-env nil) ;. good environment
(nogood-env nil) ;; nogood environment
(contra-datum nil) ;; dummy contradiction datum
(empty-env nil)) ;; {{}};; hold in all environment

(defun print-atms (atms stream ignore)
(format t "atms-~a" (atms-title atms}))

(defun print-full-atms ()
(format t "~%Title:~a" (atms-title *atms*))
(format t "~%Datums:~a" (atms-datums *atms*}))
(format t "~%Good-env:~a" (atms-good-env *atms*}))
(format t "~%Nogood-env:~a" (atms-nogood-env *atms*)))

.;; DATUM STRUCTURE <Fact>

217

.;; PRINT FUNCTIONS
(defstruct (datum ((PREDICATE datum?)
(:PRINT-FUNCTION print-datum))
(fact nil)
(assumption? nil) ;; Weather it is an assumption or not
(alpha-list nil) ;; where the datum is stored
(justs nil) ;; justify this datum
(consequences nil);; this datum belong to these justification
(label nil) ;; Label of the datum
(de! nil) ;; tag used to detect the datum that in out mem
(Stime nil) ;; time stamp when its moved to in part
(jtime nil)) ;; this time is used to determine with which you need to join
:; =1 join with all datums
-0 :no join is needed

;; else ;join according to stime

(defun print-datum (datum st ignore)
(format st "Datum:~a" (datum-fact datum)))

(defun show-datums (datums)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

203

(dofist (datum datums)
(format t "~% ")
(format t "~%Datum: ~A ~%Assumption: ~A "
(datum-fact datum)
(datum-assumption? datum))
(format t "~%Alpha-list :~a" (datum-alpha-list datum)})
(format t "~%Justs:~a" (datum-justs datumy))

(format t "~%Consequences:~a"(datum-consequences datumy))

(format t "~%label :~a" (datum-label datum))
(format t "~%Out :~a" (datum-del datum))
(format t "~%time stamp :~a" (datum-Stime datum))
(format t "~%join timep :~a" (datum-jtime datum))

(read)))

;:Justification structure

(defstruct (ust (:print-function print-just))
(informant nil)
(consequence nil)
(antecedents nil))

(defun print-just (just stream ignore)
(format t "~%just-~a" (just-informant just))
(format t "~%antecednts:~a" (just-antecedents just))
(format t "~%Consequence:~a" (jusi-consequence just)))

(defun print-full-just (justs)

(dolist (just justs)
(format t "~%6Informant:~a" (just-informant just))
(format t "~%Antecedentsi~a" (just-antecedents just))
(format t "~%Consequence:~a" (just-consequence just))))

::ENV structure and print function

(defstruct (env (:print-function print-env))
(assumptions nil) ;;; Those (single) datums in the environment

(datums nil)) ;;; A List of all datums have this environment

defun print-env (env stream ignore
p g
(format t "env-~a" (env-assumptions env)))

(defun print-full-env (envs)

(dolist {(env envs)
(format t "~%Assumptions:~a" (env-assumptions env})
(format t "~%datums:~a" (env-datums env))))

.., CREATE ALL THE STRUCTURE

1- ATMS
2- Datums and CONTRADICTION Datums
3- Environment and EMPTY-ENV

313
3y

333

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

204

(defun create-atms (title)
(setq *atms* (make-atms ‘TITLE title))
(create-contradiction-datum)
(create-empty-env)
atms)

Input (1 (fact)) -- this is a tuple? (not a compound tuple)
-asn jweather it's assumption or not

‘Note :The datum must not exist previously

., Operation :create datum and process it is label

5o Output :Datum

(defun create-datum (wme asn)

(setq datum (make-datum

fact (list wme)

-assumption? asn))

?l)
3!)

”)

(when asn
(setq e (create-env (list datum)))
(push e (datum-label datum))
(push datum (env-datums €)))
datum)

- This datum is used only to justify the contradiction rules
(defun create-contradiction-datum ()

(setf (atms-contra-datum *atms*)
(make-datum :fact '(1 '(FALSE)))))

(defun create-empty-env ()
(setf (atms-empty-env *atms*) (create-env nil}))

: Input :Assumption envolved in the environment
Output -if the environment is exist previously return it
else create a new one
(deﬁm create-env {assumptions &aux)
(setq e (make-env :ASSUMPTIONS assumptions))
(setq exist (lookup-env e (atms-good-env *Atms*)))
(unless (or exist {nogood? e))
(setf (atms-good-env *Atms*) (cons e (atms-good-env *Atms*))))
(if exist exist e))

”)

”!

::-Look for an environment in a list of environment
(defun lookup-env (e env-list)
(dolist (env env-list)
(when (equal-env? env €) (retumn-from lookup-env env)))
nil)

- Two Environment are equal when the assumption in el is subbset in €2

;o and vice versa
(defun equal-env? (el €2)

LEH

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

205

(and (subsetp (env-assumptions e2)(env-assumptions el))
(subsetp {env-assumptions el)(env-assumptions e2))))

;;; HELPING FUNCTION
;;; Check if there exist an environment in the <env-list> Subset of <env>,
(defun env-subsumed-by (env env-list)
(dolist (old-env env-list) '
(when (subsetp (env-assumptions old-env) (env-assumptions env))

(return old-env))))

(defun compare-env (el ¢2)
{cond ((equal-env? €2 el) :EQ)
((subset-env? el €2) :S12)
((subset-env? e2 e1) :821)

(t NEQ))

(defun subset-env? (el e2)
(if (subsetp (env-assumptions e1) (env-assumptions €2)} t nil})

-+ return the union of two environment

b1

;2. if the union exist previously return it
{defun union-env (el e2)
(create-env (union (env-assumptions e1) (env-assumptions €2))))

;- Envs :new env come to the just from antecedent
(defun find-new-envs (antecedent envs antecedents &aux new-envs)
(incf {comp)
(drop-nogood
(make-minimal
(find-sound-complete-envs antecedent envs antecedents))))

-+ Return all the env. result from combine the environments of

;.. the antecedents
(defun find-sound-complete-envs (antecedent envs antecedents)
(dolist (datum antecedents)
(unless (eq datum antecedent) ;; in order to process only the new environment
(setq result nil)
(dolist (env envs)
(dotist (datum-env {datum-label datum))
(setq result (cons (union-env env datum-env) result))))
(setq envs result)))
envs)

-+« No env. is subset of another

123y

(defun make-minimal (env-list &aux (resuit nil))
(setq temp-list (copy-list env-list))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

2006

(dolist (env env-list)
(setq temp-list (delete env temp-list :count 1))
(unless (env-subsumed-by env temp-list)
(setq result (cons env result)))
(setq temp-list (cons env temp-list)))
result)

.:» delete all nogood environment
(defun drop-nogood (env-list &aux (result nil))
(setq temp-list (copy-list (atms-nogood-env *atms™*)))
(dolist (env env-list)
(unless (env-subsumed-by env temp-list)
(setq result (cons env result))))
result)

- Input :new-environments and the consequent of the justification
-; operation :update the label of the consequence and return the new env
s not exist in the old '
(defun whose-still-new (new-env datum}
(setq old-env (datum-label datum))
(dolist (nenv new-env)
(dolist (oenv old-env)
(case (compare-env nenv oenv)
(:S12 (setf (env-datums oenv)
(delete datum (env-datums oenv):count 1))
(setf (datum-label datum)
(delete oenv (datum-label datum):count 1)))
((CEQ :821) (setf new-eav
_(delete nenv new-env :count 1))))))
(dolist (nenv new-env)
(push datum (env-datums nenv))
(push nenv (datum-label datumy)))
new-env)

:;; Input : an environment
.. Output : return true if the environment is nogood

X2

(defun nogood? (env)
(cond ;;if it exist prev
((lookup-env env (atms-nogood-env *atms*)) t)
-if there exist ¢ subset of env
((env-subsumed-by env (atms-nogood-env *atms*)) t)
., else return nil

(t nil)))

.»; Input : Cenv is a new nogood datum

LEE]

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

207

;;; operation :remove this env from the all labels
(defun new-nogood (cenv)
(setf (atms-nogood-env *atms™)
(cons cenv (atms-nogood-env *atms*})))
(remove-env-from-labels cenv t)
(setf (env-datums cenv) nil)
(dolist (env (atms-good-env *atms*))
(when (subset-env? cenv env)
(remove-env-from-labels env)
(setf (env-datums env) nil)
(setf (atms-good-env *atms*)
(delete env (atms-good-env *atms*) :COUNT 1))))
(setf (atms-nogood-env *atms*)
(make-minimal (atms-nogood-env *atms*))))

(defun remove-env-from-labels (env &optional (first nil))
(dolist (datum {env-datums env})
(setf (datum-label datum)
(delete env (datum-labe! datum) :COUNT 1))
(unless (datum-label datum)
(when first
(push datum *visited-datums*)))))

. Input :two justification
;; Output T if they are equal

(defun eq-just (j1 j2)
(and (equal (just-informant j1)ust-informant j2))
(equal (just-antecedents j1)(just-antecedents j2))
(equal (just-consequence j1)(just-consequence j2)}))

(defun justify-datum (informant consequence antecedents &aux just)
(setq just (make-just
INFORMANT informant
:CONSEQUENCE consequence
-ANTECEDENTS antecedents))
(unless (member just (datum-justs consequence) :test #'eq-Just)
(push just (datum-justs consequence))
(dolist (datum antecedents) (push just (datum-consequences datum)))
(return-from justify-DATUM t))
nil) _

(defun justify-inst (informant consequence antecedents &aux just)
(setq just {make-just
.informant informant
:CONSEQUENCE consequence
:ANTECEDENTS antecedents))
(dolist (datum antecedents) (push just (datum-consequences datum))))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Appendix S

Rules

5.1 Queen problem
(defun queens-not-ok (rl cl r2 ¢2)
(and (or (=1112) :

(=clc2)

(= (abs (- r1 12}))

(abs (- ¢l c2))})
(or (not (=11 12))
(not (= cl c2)})))

-We can use initial-working-memory to write the cluases

m

- But since it's a large set we prefer to write a function to generate it
(defun generate-initial-working-memory (n &aux (result nil))
(dotimes (r n)
(dotimes (c n)
(push *(g Ix ,(1+ 1) ly ,(1+ c)) result)))

(set-queue (reverse result)))

(Contradiction-rule C1
((q'x 71 ly 7¢1) (q !x 72 ly 262) :test #'queens-not-ok
==> (rassert-nogood!))

(Rule R1
(q!x1!ly2%1)(q!x2ly?%2) (q!x31y7e3) (qix4ly7c4))
==> (rassert! (loc !c1 7cl Ic2 7c2 Ic3 7¢3 lod 7cd)

(generate-initial-working-memory 4)

5.2 Constraint satisfaction problem

(defun c-a-not-ok (vrl ¢ vi2 a) (not(> (+ac)4)))

(defun b-c-not-ok (vrl bvr2 ¢) (not(<(+bc}3))

(defun b-c-a-not-ok (vri bvr2 ¢ vr3 a) (not(< (+acb)9))

(Contradiction-rule C1

((ass Ivar c tval 7v2) (ass Ivar a lval 7v3)) :test #c-a-not-ok
==> (rassert-nogood!))
(Contradiction-rule C2

((ass !var b lval 2v1) (ass tvar ¢ lval 7v2)) :test #b-c-not-ok -
==> (rassert-nogood!)) :
(Contradiction-rule C3

((ass tvarb tval 7vl) (ass lvar ¢ tval 7v2)

(ass lvar a lval 2v3)) :test #b-c-a-not-ok

==> (rassert-nogood!))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

209

(Rule R1
((ass lvar b lval 2v1) (ass tvar ¢ Ival ?v2) (ass Ivar a tval 7v3)]

==> (rassert! (sol }a 7v3 !b ?v1 lc 792 })}

(initial-working-memory

(ass var a tval 3) (ass lvar a tval 5) (ass lvarb Ivai 2)
(ass lvar b Ival 3) (ass tvar ¢ lval 1) (ass lvar ¢ Ival 3)
(ass lvarclval5))

5.3 Student Registration system
(defun diff-courses (&rest Courses &aux (cou nil})
(loop
(push (first courses) Cou)
(pop courses)(pop courses)(pop courses)
(when (null courses) (return t)))
(do ((C cou (Rest C)))
((null ¢) t)
(when (member (first c) (rest c))
(return-from diff-courses nil)))

t)

(defun g3-2 (&rest C &aux (Ist nil){cou nil)}

‘(push (nth 2 c) Ist)(push (nth 5 c) Ist)(push (nth 8 c} Ist)
(push (nth 11 ¢) Ist)(push (nth 14 c) Ist)(push {nth 17 c) Ist)
(push {nth 20 c) Ist)

.- different courses

(loop '

(push (first C) Cou)
(pop C)(pop C)pop C)
(when (null C) (return t)))
(do ((C1 C (Rest C1)))
((oull c1) 1) "
(when {(member (first ¢1) (rest 1))
(return-from g3-2 nil)))
(not (and {member '1 Ist)
{member 2 Ist)
(member '3 [st))))

(Contradiction-Rule G2-1
((TryReg IN 7x1 !G-1 2 1G-2 72)
(TryReg IN 7x2 1G-1 2 1G-2 7z)) :test #diff-courses
==> (rassert-nogood!))

(Contradiction-Rule G2-2
((TryReg IN 2x1 1G-1 2 1G-2 ?z1) (TryReg IN 7x2 iG-121G-2 222)
(TryReg IN 7x3 1G-1 2 1G-2 ?23) (TryReg IN 7x4 !G-121G-2 7z4)
(TryReg IN 7x5 1G-1 2 }G-2 7z5)) :test #'diff-courses
==> (rassert-nogood!))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

210

(Contradiction-Rule G3-1
((TryReg N 7x1 1G-1 51G-2 7z) (TryReg IN 72 1G-151G-2 7z}
(TryReg N 7x2 IG-1 5 1G-2 7z)) :test #diff-courses
==> (rassert-nogood!))
(Contradiction-Rule G5-2
((TryReg IN 7x1 1G-1 5 1G-2 7z1) (TryReg !N ?7x2 1G-15 1G-2 722)
(TryReg IN 7x3 1G-1 5 1G-2 723) (TryReg IN 7x4 !G-1 51G-2 7z4)
(TryReg !N 7x5 G-1 5 1G-2 725)
(TryReg IN 7x6 1G-1 5 1G-2 7z6)) :test #diff-courses
==> (rassert-nogood!))
(Contradiction-Rule G3-1
((TryReg N 7x1 !G-1 3 1G-2 7z) (TryReg IN 7x2 !G-13 1G-2 7z)
(TryReg !N 7x3 1G-1 3 1G-2 72) (TryReg !N 7x4!G-13 IG-2 7z)
(TryReg IN ?7x5 |G-1 3 1G-2 7z)) :test #diff-courses
==> (rassert-nogood!))
{Contradiction-Rule G3-2
((TryReg IN 7x1 1G-1 3 1G-2 7z1) (TryReg N 7x2 !G-131G-2 722)
(TryReg IN 7x3 !G-13 1G-2 723) (TryReg N 7x4 1G-131G-2 ?z4)
(TryReg N 7x5 |G-13 1G-2 725) (TryReg N 7x6 |G-1 3 1G-2 726)
(TryReg IN 7x7 1G-1 3 1G-2 ?27)) :test #(G3-2 '
==> (rassert-nogood!))
(Contradiction-Rule G3-3
((TryReg IN ?7x1 1G-1 2 1G-2 ?z1) (TryReg !N ?7x2 1G-13 1G-2 722)
(TryReg IN 7x3 1G-1 3 !G-2 7z3) (TryReg IN 7x4 1G-1 3 1G-2 7z4)
(TryReg N 7x5 1G-1 3 1G-2 725) (TryReg N ?7x6 1G-1 3 1G-2 726)
(TryReg IN 77 IG-1 3 1G-2 727) (TryReg IN 7x8 !G-13 1G-2 728)) :test #'diff- courses
==> (rassert-nogood!))

(Rule R1
((Regist ICou 7x) (Course INo ?x !G1 7y 1G2 72))
==> (rassert! (TryReg IN 7x !G-1 ?y 1G-2 7z)))

(Rule R2
((TryReg IN 7x1 1G-1 7y1 1G-2 721) (TryReg IN 7x2 1G-1 7y2 1G-2 722)
(TryReg IN 7x3 1G-1 7y3 |G-2 723) (TryReg IN 7x4 !1G-17y4 1G-2 7z4)
(TryReg IN 7x5 1G-1 ?y5 1G-2 725) (TryReg IN 7x6 1G-1 7y6 1G-2 726)
(TryReg IN 7x7 1G-1 7y7 1G-2 727) (TryReg IN 7x8 !G-1 7y8 1G-2 7z8))
==> (rassert! (YouCanReg INa ?x1)))

(initial-working-memory
(course 'No 1100 |G1 1 1G2 1)(course INo 2100 1G111G2 1)
(course |No 3100 'G1 1 !G2 1)}{course INo 4100 1G1 2 1G2 1)
(course 'No 5100 1G1 2 |G2 1)(course !No 8100 1G121G22)
(course INo 9100 !'G1 2 1G2 2)(course No 10100 1G1 2 1G2 2)
(course No 11100 !G1 2 G2 2)(course !No 14100 IG1 2 1G2 3)
(course No 16100 !G1 2 1G2 3)(course !No 17100 1G12!G24)
(course INo 18100 1G1 2 1G2 4)(course INo 19100 IG121G2 4)
(course INo 1101 1G1-31G2 1) (course INo 1102 !G1 3 1G2 1)
(course !No 1103 IG13 1G2 1) (course {No 2101 1G1 3 1G2 1)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

21t

(course INo 2102 IG1 3 1G2 1) (course INo 3101 !G1 3 1G2 1)
(course !No 3102 !G1 3 1G2 1) (course INo 2103 !1G1 3 1G2 1)
(course INo 1104 1G1 3 1G2 1) (course No 4101 1G1 3 1G2 2)
(course |INo 4102 IG1 3 1G2 2) (course INo 5101 1G131G22)
(course !No 5102 |G1 3 G2 2) (course INo 3103 !G1 3 1G2 2)
(course No 6101 !G1 3 1G2 2) (course {No 6102 1G1 3 1G2 2)
(course |No 7101 IG1 3 1G2 3) (course INo 7102 G} 3 1G2 3)
(course No 8101 !G1 3 1G2 3) (course [No 8102 1G1 3 1G2 3)
(course 'No 9101 1G1 3 1G2 3) (course No 9102 IG1 3 1G2 3)
(course No 10101 !G1 3 1G2 3) (course [No 10102 !G13 1G2 3)

(course |No
(course !No
(course 'No
{(course INo
(course INo
{course {No
(course INo
(course !No
(course INo
(course INo
(course !No
(course 'No
* (course INo
(course 'No
{course INo
(course No
(course INo
{course INo

211 1G1 41G2 1) (course [No 2121G1 41G2 1)

213 1G1 41G2 1) (course 'No 214 1G141G2 1)
2151G1 4 1G2 1) (course INo 221!G141G21)

252 1G1 41G2 1) (course !No 311 1G1 4 1GZ 1)

312 1G1 41G2 1) (course !No 313 1G141G2 1)

322 1G1 41G2 1) (course No 3311G14!G21)

334 1G1 4 1G2 1) (course INo 341 IG1 41G2)

422 1G1 41G2 1) (course !No 323 1G141G2 1)

424 1G141G2 1) (course INo 432!G141G21)

433 1G1 41G2 1) (course !No 441 IG1 41G2 1)

442 1G1 4!G2 1) (course !No 314 !G151G21)
315 1G1 51G2 1) (course INo 411 {G15!G2 1)
412 1G151G2 1) (course INo 321 IG1 51G2 2)
323 1G151G22) (course INo 426 1G151G22)
434 'G1 51G2 3) (course 'No 333 1G1 5!G2 3)
431 1G151G23) (course INo 305104 1G1 6 !G2 1)
105221 !G1 6 1G2 1) (course INo 105451 1G1 6 G2 1)
133222 1G1 6 G2 1))

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

212
vl
S Bl Lol o azall o WY1 Aot B 3 US Al

sliel
5 g0t el y A
. JEAY
Sy Py ss5 Yl
8 ladl &,
(seidl Jbor 50!

o_,a_g,;..ﬂ._j)_uic__.-ﬁ‘.:_,:-nn.;nuh_ﬂm_s‘.mg_p‘;;wu_,;k-___,d@_na..‘ksﬁno,&;:u;.mg@1.15,! g
e pL ing g 6 $ R) Jand ¢ e ol sllag] ¢ Rne a o Sl e ol ey ¢ JSL2
il ae Lgo S0 Gty ¢ ottt J U es Gl M Bl ki g1l pal 2T ATMS oo jilt o dazall e
S S S e g e Y M e sl e Tl

z..,au-.Jjb:,‘auz_.t.;u)mﬁquwab)im)Lcuyimn);@&u;tzgmi@ua,bamﬂu_,
‘A_IF;A_TJ..WL‘;\’_:E.UBJcb\f(gl..ai‘.nc\:l‘;"ﬂ!f}dé@lBWr%wJ{O)@wJEMﬂ@M1IL';hoi.hj.a.a-lj't.g
Qi y Morgue plbi Las oty e oday Y Aef g s y mn Bl Bleo U85 By e S L taall 1yl A
478593 Hindi

c.f;,}:l‘;mnjrumgw._pmu,anfu,!_,@Mc“..;f_-,u:..h‘,_uu._;tc,aﬂicﬁ.i e oda) 3y
oy Uaidl L bl o 3LST ST Ly oy 1800 G el Of il s g oty caet)l om0 By g 3 AN

a3y O e 25 01y « Morgue (Ui 2Ly o B e Hindi (Uss

All Rights Reserved— Library of University-of Jordan - Center of Thesis Deposit

	

